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ABSTRACT 

A method is presented for the computation of near-field particle displacements 
and particle velocities resulting from a dynamic propagating, stress relaxation 
occurring on a finite fault plane embedded within a three-dimensional semi- 
infinite medium. To check our numerical procedure we compare our results for 
a circular fault in a full space with Kostrov's (1964) analytic solution for a self- 
similar propagating stress relaxation. 

We have simulated two bilateral strike-slip earthquakes differing only in 
hypocentral location and examined the particle motion on the traction-free 
surface and on the rupture surface. Focusing of energy is evident in both 
ruptures. The static displacement on the rupture surface overshoots the theo- 
retical static value by approximately 25 per cent. For the rupture that nucleated 
at depth the free surface almost doubled the particle velocities along the fault 
trace as compared with the rupture that nucleated at the free surface. 

Our numerical results indicate that for an earthquake "occurring on a semi- 
circular fault with radius of 10 km, an effective stress of 100 bars and a rupture 
velocity of 0.9fl in a medium characterized by fl = 3 km/sec,  a -- ~3-fl and a 
density of 2.7 gm/cm 3 particle velocities can reach 400 cm/sec and displace- 
ments 250 cm. 

We also compare our numerical results with the observations made by Archu- 
leta and Brune (1975) for a spontaneous stress relaxation on a semi-circular 
crack in a prestressed foam rubber block. 

INTRODUCTION 

T h e  physical  concept  of elastic rebound  as proposed by Reid (1910) is general ly 
accepted  as the  mechan i sm for a tectonic ear thquake.  The  essence of the elastic 
rebound  hypothes is  is t ha t  the  tectonic stress in a region is relaxed as a shearing 
f racture  (a discontinui ty in the  earth)  spontaneously  spreads over  a finite zone 
(generally assumed to be a fault  plane). Both  the ra te  of growth and its geomet ry  
are a direct  result  of the  stress s ta te  of the med ium prior  to rupture,  the instanta-  
neous stress s ta te  in the  m ed i um  during rupture,  and a f racture  criterion determining 
whe ther  or not  the rup ture  front  advances.  The  ear th  as the med ium can be 
inhomogeneous  and anisotropic. T h e  ear th  is finite and has  a stress-free surface 
which m a y  be intersected by the fracture  area. Al though we have  a quali tat ive 
descript ion of an ea r thquake  mechanism,  there  is no quant i ta t ive  solution which 
total ly embodies  the  premises  of Reid 's  concept.  

T h e r e  are m a n y  valid approximat ions  to the complete  solution. Obtaining be t t e r  
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approximations to the complete quantitative solution of earthquake dynamics not 
only enables one to appraise the physics of the source but also allows one to 
determine more accurately the expected near-field ground motion for engineering 
purposes. Kinematic models in which the discontinuity in displacement on the fault 
is specified apr ior i  have been used by many researchers, e.g., Haskell (1964), Savage 
(1966), Aki (1968), Boore et al. (1971), Trifunac and Udwadia (1974) and Anderson 
and Richards (1975), to name but a few. In 1964 Kostrov derived the first three- 
dimensional analytical solution for a shear stress relaxation on a plane. However, 
Kostrov's solution required a continuously expanding fault plane in an infinite 
medium. This work was later extended by Burridge and Willis (1969), Richards 
(1973, 1976), and Burridge and Levy (1974). An analytical solution for a propagating 
stress relaxation on a finite fault in two dimensions was given by Burridge and 
Halliday (1971). Numerical solutions to two-dimensional fault dynamics have been 
presented by Burridge (1969), Hanson et al. (1974), and Cherry et al. (1976), and St 
5ckl (1977). A three-dimensional numerical solution for a finite fault plane in a full 
space has been published by Madariaga (1976). Another finite fault in a full space 
has been analyzed by Bache et al. {1976). Using finite elements Dieterich (1973) 
examined a spontaneously propagating rupture. Other researchers have pursued an 
approach in which spontaneous fracture is a direct result of a fracture energy 
criterion (Griffith, 1921). The results to date have been two-dimensional, Kostrov 
{1966, 1974), Ida (1972), Eshelby (1969), Freund (1972), Husseini et al. (1975), 
Andrews (1976}, Das and Aki (1977). 

The above list is of course only a partial listing of the many researchers who have 
approximated a quantitative representation for the elastic rebound hypothesis. In 
this paper we shall present another approximation that  extends some of the previous 
work by simulating an earthquake as a propagating stress relaxation over a finite 
fault area embedded within a semi-infinite medium that includes a stress-free 
surface. The fault plane may or may not intersect the stress-free surface. In this 
model we specify the initial stress, the coefficient of sliding fraction, the rupture 
velocity, the geometry of the fault including the hypocenter, and the properties of 
the medium. This model is an approximation in that  the rupture velocity and the 
fault geometry are specified a priori.  However, the model is a fully three-dimen- 
sional, dynamic fracture occurring in a semi-infinite medium. 

EARTHQUAKE MODEL 

We will represent an earthquake as a propagating stress relaxation over a finite 
fault plane embedded within a half-space. The fault plane may or may not intersect 
the surface of the half-space. To implement this model we specify the hypocenter, 
the geometry of the fault plane, the rupture velocity, the initial stress in the medium, 
and the coefficient of sliding friction. Although portions of the following general 
formulation of the problem of a propagating stress relaxation have been presented 
elsewhere including a full description by Kostrov (1970), in order to be clear about 
our terminology and the approach that  guided our numerics we present in this 
section the mathematical basis for a propagating stress relaxation in the presence of 
friction. Later in this section we specialize to the case of a strike-slip earthquake. 

Figure 1 shows an arbitrarily oriented fracture surface embedded within a half- 
space. We will use a Cartesian coordinate system (determined by three orthonormal 
vectors (xi, x2, x3). (The ^ above any vector indicates that vector has unit length.) 
We denote by u(x, t) the particle displacement vector at position x and time t 
relative to its position at time t = 0. We denote by S(x, t) the total stress tensor at 
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pos i t ion  X and  t i m e  t. T h e  sur face  of  the  ha l f - space  wi th  o u t w a r d  n o r m a l  ~(x) is 
t r ac t ion - f ree  

S(x,  t ) -~(x)  = 0.. (1) 

T h e  fau l t  a r ea  a t  t i m e  t on wh ich  the  slip ve loc i ty  is nonzero  is de s igna t ed  b y  
Z(x ,  t); the  a r ea  of  the  final r u p t u r e d  sur face  is des igna ted  b y  Eo(X). T h e  discont i -  
nu i t y  in par t ic le  d i s p l a c e m e n t  (slip) on E(x,  t) is d e n o t e d  by  s(x ,  t) and  def ined  for  
x on Z(x ,  t) as  

s ( x ,  t) = l i m  [ u ( x  - ef t (x) ,  t) - u ( x  + ef t (x) ,  t)] 
e~O 

(2) 

w h e r e  e is a pos i t ive  rea l  n u m b e r ,  and  ft(x) is an  o u t w a r d  n o r m a l  to the  p l ane  
Z(x ,  t). T h e  slip ve loc i ty  is g iven  b y  

0 
s(x,  t) = : s(x,  t). (3) 

d t  

_ 

Z i ^  
-- , X 2 ~  

i 

FIG. 1. A sketch of the  geometry of a rupture surface Y,(t) embedded  within a half-space designated 
by basis vectors x], x2, ~.  Z0 is the final area of fracture; n, ~, e are unit vectors normal to Y~(t), in the 
plane Z (t) and in the direction of instantaneous slip, in the plane Z(t) and perpendicular to ~, respectively. 
The plane Y~(t) has a dip t~ with respect to the traetion-free surface whose outward normal is ~. 

T h e  final un i t  vec to r  cha rac te r i z ing  the  r u p t u r e  sur face  is 

6(x,  t) = ~(x, t) × f t (x) .  (4) 

Fo r  t he  r e m a i n d e r  of  th is  sec t ion  the  un i t  vec to r s  ft(x),  ~(x, t) and  6(x,  t) will be  
wr i t t en  w i t h o u t  t he i r  a r g u m e n t s .  
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We now consider the conditions that  apply to Z(x, t) in order to simulate sliding 
friction. First we require that  the fracture mechanism be shear failure only by not 
allowing a discontinuity in particle displacement normal to X(x, t) 

s ( x ,  t) .  l~ -- O. (5) 

The condition that  on X(x, t) sliding friction opposes the slip velocity is given by 

h. S (x, t).  ~ = --SF(X, t) (6) 

where SF(X, t) is the magnitude of the traction due to sliding friction 

SF(x, t) = -) ,(x)fi .  S(x, t). fi (7) 

where 

ft. S(x, t) .fi  _-_ 0 

with ~,(x) _-_ 0 being the coefficient of sliding friction. The  auxiliary condition 
imposed during sliding is 

ft. S(x, t). 6 = o. (8) 

In order to heal the fault we must  determine the time at which the slip velocity 
tries to reverse direction. This time can be determined by posing a hypothetical  
problem at each time increment: Suppose we forced the sliding to stop at position 
x and time t. Then x would become part  of the continuum and would have associated 
with it a stress tensor, say S'(x, t). We let s(x, t) be the slip velocity if the sliding 
had been allowed to continue. Now if fi-S'(x,  t). s(x, t) is less than SF(X), then 
E(x, t) heals at  x, i.e., s(x, t) is set to zero and s(x, t) is held fixed for all subsequent  
time. If the criterion ft. S'(x, t). s(x, t) < SF(X) is not met, then sliding is allowed to 
continue. We point out  later in this section that  for the computat ions to be presented 
in this paper an approximation to this general criterion was used. 

Subject  to the above boundary  conditions the particle motion is determined by 
the conservation of linear momentum 

V. S(x, t) + f(x) = pii(x, t) (9) 

where f is a vector representing any body forces, e.g., gravity, in the medium, p is 
the density of the medium, and the pair of dots represent  the second partial time 
derivative 02/0t 2. The total stress tensor S(x, t) ignoring effects due to rigid body 
rotations is a linear combination of the prestress tensor S°(x) in the medium and 
the stress tensor o(x, t) that  results from the fracture process 

S(x, t) = S°(x) + a(x, t). (10) 

Since the prestress is in equilibrium with the body force 

V.S°(x) + f(x) = 0, (11) 
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equat ion (9) reduces to 

V. a(x,  t) ~- pti(x, t). (12) 

We fur ther  assume tha t  everywhere outside of E(x, t) the medium is l inearly elastic, 
isotropic, and homogeneous.  Hence  

a(x,  t) = 2~c(x, t) + h(tr e)I (13) 

where # and ~, are Lame parameters ,  E(x, t) is the strain tensor, I is the identi ty 
tensor, and t r  E is the trace of E(x, t). The  strain tensor  ~(x, t) is related to the 
particle displacement by  

1 
e(x,  t) = ~ (Vu(x, t) + [Vu(x, t)] T) 

z 
(14) 

where [Vu(x, t)] T means the transpose of the tensor  Vu. 
As an illustration of this general model of an ear thquake we will consider a strike- 

slip ear thquake occurring on a vertical fault plane embedded within a homogeneous 
and isotropic half-space. T h e  geometry  for this example is shown in Figure 2. Th e  
prescribed final f ractured plane Eo (the area within the semicircle of radius r0) lies 
in the plane x3 = 0 with - : ~  as its outward normal (n); the outward normal  for the 
traction-free surface is -x2.  Relative to the basis vectors Xl, x2, x3 we designate 
S0(x, t) as the i j  component  of the total  stress tensor  where i = 1, 2, 3 and j = 1, 2, 
3. 

. . . . . .  - × ,  

(2 

FIG. 2. Geometry of the fault surface used in the finite element computations for a strike-slip 
earthquake occurring on a semicircular, vertical fault plane. 

Because we are considering a vertical fault plane within a homogeneous and 
isotropic half-space, the displacement field has symmet ry  propert ies  with respect  to 
the plane x3 -- 0, Haskell  (1969) 

ul (x l ,  x2, 0 +, t) = -Ul(Xl, x 2 ,  0--, t), 

U2(Xl, X2, 0 +, t) = --U2(X~, X2, 0--, t), 

U3(Xl, X2, 0 +, t) = U3(Xl, X2, 0--, t), 

(15a) 

(15b) 

(15c) 
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where 0+(0 -) refers to the positive (negative) x3 side of the plane. 
We will examine the time evolution of the conditions for a particular particle 

located within Eo at  a point P = (Xl, x2, 0+). We divide this evolution into four 
periods: (1) the time preceding the nucleation of the rupture, t < 0; (2) the time 
between nucleation and the time (tA) tha t  the rupture front arrives at  P, 0 _-__ t < tA; 
(3) the time after the arrival of the rupture front and the time (tH) before the sliding 
stops at P, tA = t < tH; (4) and finally the time after sliding has stopped, t >= tH. It  
should be noted tha t  only in the time interval tA = t < tH are boundary conditions 
applicable to the particle at P, for it is only during tha t  period tha t  the particle at 
P is a part  of the surface E(x, t). 

For this example we let the hypocenter  be (0, 0, 0) and let the rupture front 
expand at  a constant  velocity v which is less than  the shear-wave speed of the 
medium. Prior to nucleation, t < 0, the conditions at  P are 

S0{P, t) = ~-(P), (16a) 

u ( P , t ) = 0  and f i ( P , t ) = 0 .  (16b) 

For time t such tha t  0 _-__ t < tA the condition at  P is 

S~j(P, t) = S~(P) + ~j(P, t) (17a) 

with 

Ul(P, t) = 0 (17b) 

and 

u2(P, t) = 0 (17c) 

by the symmetry  conditions, equations (15); u3(P, t) is determined by the conser- 
vation of linear momentum.  The stress aii(P, t) is a result of fracture occurring on 
other parts of the fault. The perturbation in the stress field due to fracture 
propagates with the P-wave and S-wave speeds of the medium. Hence, this radiation 
arrives prior to the rupture front. 

At a t ime t such tha t  tA _-< t < tH we apply the following boundary conditions 

s(P,  t). ( -~3)  = 0, 

S3,(P, t) = --SF(P) COS 8, 

(18a) 

(18b) 

and 

$32(P, t) = --SF(P) sin 0 (18c) 

where tan 0 = s2(P, t)/sl(P, t) and SF(P) = -/(P)S°3 (P). Because $33 is continuous 
across the plane xa - 0 and a33 is an odd function with respect to x3 for a vertical 
fault plane, 033(xl, x2, 0, t) = 0. Thus, SF(X) = y(x) S°s(x). 

At the time tH the quanti ty [(831(P, tH)) 2 -t- (832(P, tH))2] ½ is less than  S F ( P ) ,  and 
the rupture surface heals at  P. For all time t >= tH the slip velocity s(P, t) is set to 
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zero and the slip s(P, t) is fixed at the value it had just  prior to the time tH. Thus, 
permanent  displacements are set within the medium. 

A parameter  tha t  we will use to scale our results is the magnitude of effective 
stress [aE(X, t)I- Actually, az(x, t) is a traction, and for the general fault shown in 
Figure 1 is defined as 

a E ( X ,  t)  = TO(X) - SF(X)~(x, t) (19) 

where 

TO(x) = f t .  S ° (x )  - (ft.  S ° (x )  • f i ) l i  (20) 

and SF(X, t) is given by equation (7). The vector TO(x) by definition has no 
component in the direction normal to the plane E(x, t) thereby ensuring that  the 
fracture process relieves only the shear stress acting on Z(x, t). The magnitude of 
a~(x, t) is 

laB(x, t)l = (T°(x)-T°(x) - 2SFfi. S°.~ + SF2} ~. (21) 

In the particular example of a strike-slip earthquake occurring on a vertical fault 
plane 

]aE(X, t)[  = { [ S ° , ( x ) ]  2 + [S~32(x)] 2 + SF2(X) 

-- 2SF(x)[S~31(x) cos 0 + 8~32(x) sin 8]} ~ 
(22) 

where tan 0 = s2(x, t)/s~(x, t). We can further simplify this expression by assuming 
S~32 = 0 and replacing SF(X) by -~,(x) S~33(x) 

l aB(x ,  t) l = {[801(X)] 2 + [--Y(x)S°3(X)] 2 "}- 27(x)S°a(x)S°dx) cos 0} ~. (23) 

We see tha t  if the friction vector is constrained to oppose only the motion in the 
i~ direction, i.e., 0 = 0, then equation (23) is further reduced to 

JOE(X, t) l = ~331(x) "~- " ~ ( x ) ~ 3 3 ( x ) .  (24) 

For the results in this paper we have assumed tha t  0 = 0, S.°2 = 0, and have taken 
[aE(x, t)] to be a constant  over the zone of rupture, laB(x, t)] = aE. Equation (24) 
allows numerous possibilities for the functions S.°1 (x) ,) , (x) ,  S~.~3 (x) tha t  could 
combine to form a constant  OE. For example, suppose S°s (x) = - p g x 2  where g is the 
acceleration due to gravity at the surface of the Earth, then two simple possibilities 
exist for S°1 (x) and ),(x). First ~/(x) could be a constant, say ~/, and S°1 (x) = OE + 
7pgx2;  or secondly, S°1 (x) could equal aE + 1 while ~/(x) = 1 / ( p g x D .  Another simple 
possibility is tha t  ¥(x) = 0 with S°1 (x) = OR, i.e., complete stress relaxation. However, 
the last possibility leads to a problem of understanding what physical mechanism 
would prevent the fault from sliding, during the healing phase, opposite to the 
direction of the initial prestress. Regardless of what  functions are chosen for 
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S°l(x), 7(x) and S~3(x) to satisfy [ aE(X) I = aE, the magnitude of the seismic radiation 
can be scaled by OE. 

Because of our assumption for this paper that  friction opposes only that motion 
in the :~1 direction, we used as our stopping criterion that the fault heals at x when 
/tl(x, t) tries to reverse its direction. This simplified criterion does not seriously 
affect the time at which the fault heals but it does lead to a high-frequency spike in 
the ~ component of particle velocity as can be seen in some later figures. 

SCALING 

Using the physical quantities--a, the P-wave speed;/~, the shear modulus; r0, the 
final fault radius; and oE, the magnitude of effective stress--we have cast all physical 
variables into dimensionless form (Madariaga, 1976) 

Length, 1 = r01 
Time, t = ro/a-t  

Stress, aij = OE&] 

Displacement, ui = rooE/#f~i 

Particle Velocity, ui = aaE/l~ui ,  

where the dimensionless parameters are designated by a tilde. All other variables 
that we will use can be derived from the above. In this presentation we have 
assumed our medium to be a Poisson solid, a = ~f3fi. 

All the figures related to particle motion in this paper will be plotted in nondi- 
mensional quantities. Whenever we transform the nondimensional quantities to 
dimensional values, we shall assume the following numerical values: a = 5.196 
km/sec, fl = 3.0 km/sec, # = 2.43 × 10 ~ bars, r0 = 10 km, aE = 100 bars. Rather than 
repeat these values, we shall refer to them as the standard set of parameters for the 
medium and the fault. While these values approximate a class of earthquake 
conditions, other values can be employed to scale the dimensionless result for other 
particular situations with the restriction that a = ~-fl. 

FINITE ELEMENT TREATMENT 

The continuum equations presented in the previous section are treated numeri- 
cally using a finite element procedure originally described by Frazier and Petersen 
{1974). The displacement field is approximated over the interior of 8-node brick 
elements by linear interpolation to yield spatially discrete equations 

[K] (u(t)} + [C] {/t(t)) + [M] (ti(t)) = (F(t)} (25) 

where {u} is a column listing of the three components of displacement at the N 
node points in the finite element grid. [K] is a 3N by 3N stiffness matrix whose 
bending and torsional properties have been modified from strictly linear interpola- 
tion by the inclusion of incompatible (quadratic) deformation mode, i.e., the stiffness 
of each element is explicitly assigned according to beam theory. The viscosity matrix 
[C], which is taken as proportional to [K], serves to suppress spurious high-frequency 
signals that result from numerical dispersion. [M] is a diagonal matrix which 
contains the effective mass that acts at each node in the finite element grid. 
Boundary conditions on the rupture surface E enter the numerical equations through 
the forcing matrix {F(t)} as described in Appendix I. 
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An explicit method is used for integrating nodal displacements in time. Time- 
centered differencing is used for relating nodal accelerations {ti(t)} with nodal 
displacements 

At2{ti(t)} --~ {u ( t  + At)} --2{u(t)} + { u ( t -  At)} (26) 

and backward differencing is used for relating the nodal velocities in the viscosity 
terms to nodal displacements 

At{u(t)} = {u(t)} -- { u ( t - - A t ) }  (27) 

where A t  is the numerical time increment. These temporally discrete forms are 
substituted into the equation (25) to provide our explicit equations for nodal 
displacements at the advanced time t + At 

{u( t  + At)} = 2{u(t)} -- {u ( t  -- At)} + At2[M]-I(F(t)} (28) 
- -  A z 2 [ M - j - I [ K ]  {(1 + At d ) u ( t )  - A t  d u ( t  - At)} 

with [C] = At d[K], d being a dimensionless damping coefficient. 
To accommodate the rather massive grid involved in three-dimensional earth- 

quake modeling, the stiffness matrix [K] is not stored, but rather material properties 
and nodal positions are used to produce the matrix products [K] {u(t)} at each time 
step. In this regard, our computing algorithm resembles finite difference procedures. 
Also, two damping coefficients dp and ds are used in the computer program to 
attenuate independently P waves and S waves. 

Before numerically determining particle displacement, velocity, or acceleration 
we must understand how the numerical method provides an approximate solution 
to the differential equation. The basis of numerical techniques is discretization. The 
independent variables such as time, space, or both are discretized. Discretization 
results in an inherent limitation on the information obtained numerically. In a very 
.real sense, discretization acts like a low-pass filter which when applied to the exact 
solution produces an approximate solution--the numerical one. The numerical 
solution cannot contain information for frequencies greater than the Nyquist fre- 
quency, N f  = ½At. 

We consider the finite element method as applied to simulating an earthquake. 
The important factor is discretization of the spacial continuum into finite elements, 
e.g., cubical volumes. The vertices of the elements are the points in space at which 
we will describe the particle motion. However, the computed particle motion is not 
the motion of a single point. The computed particle motion represents an average 
motion of the continuum within a grid dimension surrounding that point. 

Analysis of the numerical equations and experience obtained from comparing 
numerical solutions with analytical solutions indicate that wavelengths greater than 
six grid dimensions (6Ax) are accurately synthesized, Smith (1974), Day (1977). A 
wavelength of six grid dimensions propagates slower than in a continuum by no 
more than 4 per cent. The amplitude of a six-grid-dimension wave decays with 
distance x excluding geometrical spreading by the factor e -'°4x/~x for calculations 
presented in this paper. The decay in amplitude with distance can be eliminated by 
prescribing d = 0; however, numerical dispersion then causes high frequency 
oscillations which can adversely affect the treatment of boundary conditions on the 
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rupture surface Z. 
Since the numerical method involves computer storage and costs, we do not have 

unlicensed freedom in choosing a grid. If we divide a given volume into elements, 
and then later divide that  same volume into twice as many elements, the computer 
storage will be approximately eight times greater and the cost will be approximately 
sixteen times greater. (The numerical simulation of an earthquake involving 6000 
three-dimensional elements averaged in time about 8 min. The numerical simula- 
tions were executed on a Control Data Corp. 7600 at Lawrence Berkeley Laboratory, 
Berkeley, California.) 

This entire discussion is meant to emphasize an important feature of the finite 
element method: the particle motion is dependent on grid size. This dependence 
does not invalidate the results so long as one understands that  the computed particle 
motion reflects an average motion of the continuum over a spatial domain charac- 
terized by the grid. 

SELF-SIMILAR COMPARISON 

In order to validate our finite element technique, we sought to compare our 
numerical results against a known three-dimensional, analytical solution for a 
propagating stress drop over a planar area. Thus we simulated Kostrov's (1964) self- 
similar problem of a rupture initiating at a point and then expanding with a constant 
speed as a circle over a plane in a full space. Referring to the geometry shown in 
Figure 2 the analytical solution for the ~:1 component of displacement at any point 
(Xl, 0, 0 +) (where 0 + refers to the positive ks side of the fault) is 

Ul = C ( V / ~ )  a E  ~ % / t  2 - -  X12//D 2 H ( t  - X l / [V) ,  (29) 

c(v/fi)  is some constant computed by Dahlen {1974), v is the rupture speed, fi is the 
S-wave speed, and H(t)  is the Heaviside step function. In our numerical simulation, 
we limited the size of the fault to a radius r0. However, until any effects due to the 
finiteness of the fault propagate to an observer, the self-similar solution should 
remain valid. For this particular example, we have taken a rupture velocity such 
that 

v = 0.9ft. (30) 

Symmetry considerations of the displacement field allow us to simulate numeri- 
cally this problem using one octant of a full space. Symmetry properties permit us 
t~) consider only the positive x3 space. The rupture is symmetric with respect to the 
plane xl = 0; thus, for positive x3 values, symmetry conditions 

ul(xl,  x2, x~) = u d - x ~ ,  x2, x3), 

u~(x~, x2, x~) = -u2 ( - x~ ,  x2, x~), 

u~(xl, x2, x.~) = -u~( -x~ ,  x2, x3), 

(31a) 

(31b) 

(31c) 

reduce the problem to a quarter space. Symmetry properties with respect to the 
plane x2 = 0 with both xl and x3 being positive 

ul(xl,  x2, x3) -- Ul(X,, -x2 ,  x~), (32a} 
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u2(x,, x2, x3) = -u2(x, ,  -x2,  x3), 

u3(xl, x2, x3) = u3(xl ,-X2,  x3), 

(32b) 

(32c) 

reduce the analytical full space problem to one which can be simulated by examining 
one octant of the full space (one quarter of the circular fault) which we choose to be 
the octant for which xl, x2, and x3 are all positive quantities. 

Figure 3 displays the analytical and numerical results for five values of x1(~1 = x l /  
r0). The analytical results (solid lines) which would linearly extend indefinitely have 
been terminated at the border of the figure. The numerical results (crosses) agree 
quite well with the analytical results at early times including the square root 
discontinuity which characterizes the arrival of the rupture front. 
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To quantify the agreement between the analytic solution and our finite element 
results we have computed the amplitude spectrum of displacement for our numerical 
results using a Fast Fourier Transform and derived the analytic Fourier transform 
of Kostrov's solution. The comparison in the frequency domain for points located at 
0.1, 0.4, and 0.8 r0 are shown in Figures 4, 5, and 6. The most important feature is 
that  the numerical results accurately reproduce the high-frequency spectrum up to 
2 Hz. This resolution in frequency is about four times greater than what one could 
expect from a finite element method propagating a wave. The frequency 2 Hz is 
approximately the inverse of the time taken for the rupture velocity to cross the 
diagonal of one element. The accuracy directly results from our method of relaxing 
the stress as the rupture front passes through an element, Appendix I. Basically the 
effective stress that  contributes to the nodal force is weighted by the area that  is 
encompassed by the rupture front. For example, a particle (node) within the 

F I G .  3. Compar i son  at  five locations of particle d isp lacements  obta ined from Kos t rov ' s  (1964) self- 
s imilar  rupture ,  v = 0.9fl, wi th  our  finite e lement  solut ion (crosses) for a circular fault  of  radius  r0. 
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FIG. 4. For a particle at 0.I r0 a comparison between the d{spla6ement amplitude spectrum from 
Kostrov's self-similar solution, labeled K, and from our finite element solution labeled F.E. for a circular 
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prescribed fault boundary has four elemental areas that contribute to the effective 
stress. It is not until all of these areas are completely enclosed by the rupture front 
that  the stress relaxation is complete. High resolution of the displacement function 
on the fault is important because this function can then be used as input for other 
methods which have a better capability of propagating waves, e.g., Green's functions, 
reflectivity, Fuchs and Mfiller (1971), or direct wave number integration, Apsel e t  

al .  (1977). 
The analytic spectrum has a low frequency asymptote proportional to f-2 since 

the displacement grows linearly in time and a high frequency asymptote proportional 
to f-~/2 as a result of the square root discontinuity at the initiation of the slip 
function. Because the numerical results are for a finite source, and the displacement 
has a nonzero static value, the numerical results have a low frequency asymptote of 
f-1. The scale for the spectrum is determined using an effective stress of 100 bars. 
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FIG. 6. See Figure 4 for caption. Particle at 0.8 r0. 

An important consideration is the stopping phase. Near the initiation of rupture, 
e.g., r = 0.1 ro, the dominant feature is the arrival of the rupture front; however, if 
the rupture stops abruptly at the boundary of the fault, the stopping phase can have 
a pronounced effect on the high-frequency end of the spectrum for points near the 
boundary. The numerical results deviate from the analytical solution at times t > 
T where 

r0 - ~ + X22 
r = ro/V + (33) 

O~ 

Thus the deviation at late time is caused by the finiteness of the fault; information 
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pertaining to the size of the fault initially propagates from the edge of the fault to 
an observer with the P-wave speed. 

The distribution of static offsets is fit quite well by a curve 

(34) 

where the term in brackets is the static solution for a circular crack of radius ro, 
(Neuber, 1937; Keilis-Borok, 1959; Eshelby, 1957). Thus, if one were to infer a stress 
drop from measuring static displacements, the inferred stress drop would be 27 per 
cent too large. This overshoot in the static displacement has been noted before by 
Savage and Wood (1971) and was calculated by Madariaga (1976) though he found 
a 20 per cent overshoot. 

x. 

T 

X2 

FIG. 7. Finite element grid used in this paper for simulating earthquakes. Because of symmetry 
conditions only one-half of the grid shown was used in computations. 

HALF-SPACE COMPUTATIONS 

Having satisfied ourselves that our finite element technique correctly executes 
our rupture model, we shall examine the near-field motion caused by a propagating 
stress drop over a vertical, semicircular fault which intersects the free surface. The 
first two ruptures which we shall discuss use the geometry and grid shown in Figure 
7 which is the same grid used to simulate Kostrov's analytic solution. 

For the rupture which nucleates at depth, we expanded the grid in the kz direction 
by adding three  additional rows of elements such that there are 12 rows of uniform 
elements and 11 rows of expanding elements. This was necessary to prevent P-wave 
reflections from returning from the boundary plane for which x2 takes on its 
maximum values. Being substantially different, the geometry of the .third rupture 
will be discussed later. Each rupture is bilateral allowing us to use only one-half of 
the grid shown in Figure 7. The grid used in the computations is 20 by 20 by 15 
three-dimensional rectangular elements. The near-field volume 10 by 10 by 5 is 
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composed of cubical elements. Beyond this volume each element increases with a 20 
per cent growth rate to place the outer boundaries at such a distance that a P wave 
cannot reflect from the outer boundary and return to contaminate the near-field 
motion. 

SUBSONIC RUPTURE, SURFACE ORIGIN 

First we consider a rupture which nucleates at the free surface and propagates 
subsonically until the whole fault plane has had a uniformly applied effective stress. 
Because the ground motion scales directly with the effective stress, we can set OE to 
any value, e.g., OE = 1 bar. However, the particle motion may or may not scale 
directly with rupture velocity. Hence, the results given in this section are applicable 
only for the specified rupture velocity, v = 0.9ft. 

To illustrate the particle motion (in our numerical scheme we store the time 
history of displacement for every point on the free surface and for every point on 
the fault surface) we have plotted in Figure 8 the individual time histories of particle 
displacement and particle velocity along the strike of the fault at the free surface. 

First consider the particle displacements in Figure 8. Except for the node at the 
origin of the rupture (0, 0, 0) for which the displacement is linear in time, all of the 
displacements Ul have a discontinuity in displacement which characterizes the 
arrival of the rupture front as in the self-similar rupture. We see that in magnitude 
the component Ul dominates the vertical displacements (u2) and the transverse 
displacements (u3), the latter two being comparable in magnitude. In Figure 9 we 
have made a composite plot of ~tl versus t for ten points along the fault trace. These 
points are labeled 0 to 0.9 to indicate the ratio of their distance (r) from the origin 
to the radius (ro) of the fault, e.g., 0.8 implies r = 0.8 r0. Recall that in our rupture 
model a particle exactly on the fault boundary is constrained to have ~1 = /t2 = 0. 
The distribution of static offsets for ~1 is fit well by the static solution, see equation 
(34), provided the effective stress aE is multiplied by 1.25 to account for the dynamic 
overshoot (Savage and Wood, 1971). 

The focusing of energy in the direction of propagation is clearly revealed in the 
particle velocity field. Witness the particle velocity ul tripling in magnitude from 
the origin to the outer boundary, Figure 10. 

The particle velocity ul closely resembles the analytic form of the self-similar 
model. For example, the particle at (0, 0, 0) in Figure 10 shows a jump to a constant 
velocity indicative of the linear displacement time history. Looking at the particle 
r0 = 0.6 in Figure I0 the square root discontinuity manifests itself as the jump which 
is followed by a decay with a square root dependence in time to a constant velocity. 
If the finite element solution had infinite frequency resolution, the particle velocity 
peak would theoretically be infinite. 

The ~ component of velocity reveals two interesting phenomena in Figure 8: (1) 
The long-period peak prominent at positions (0, 0, 0) through (5, 0, 0) appears to 
originate at the outer boundary of the fault and propagate toward the center (0, 0, 
0); whereas the long-period trough late in the signal appears to move outward from 
the center. Since we have no numerical reflections from the outer boundaries of our 
finite element grid capable of arriving during that time period, we surmize that these 
phases are related to the healing of the fault. (2) The ~ component displays the 
near-field horizontally polarized motion that travels a~ the P-wave speed. This near- 
field term in the particle velocity/t3 is seen clearly as the small depression preceding 
the large positive peak for particles at (9, 0, 0) (10, 0, 0), and (11, 0, 0) at which 
distance phases traveling at the P-wave speed and S-wave speed are well separated. 
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The exact time at which a point in the fault plane locks is not simply related to 
its distance from the fault boundary as it was in the full-space calculation. Also the 
free surface destroys any symmetry with respect to a 45 ° line through the origin in 
the fault plane. For example, nodes along the fault trace ~1 axis have longer rise 
times than do points along the ~2 axis. A major difference between our half-space 
computation and full-space solutions (Richards, 1973, 1976; Madariaga, 1976) is the 
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FIG. 8. The computed dimensionless particle displacements and velocities for 11 positions along the 
fault trace based on a subsonic rupture with a surface origin. 

existence of u2 and/L2 even though we relieved only the $31 component of stress. The 
existence and magnitude of u2 and/z2 are precluded in full-space solutions and are 
elements which would violate Madariaga's (1976) scheme for reducing a three- 
dimensional problem to a two-dimensional computation. 

Microzonation assessments are based on knowing the probable distribution of 
maximum, near-field, ground motion. Any number of variables, e.g., maximum 
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FIG. 9. A composite plot of time histories of dimensionless particle displacement ~1 for positions along 
the fault trace. Displacements initiate with a square root discontinuity. Static values follow the elliptical 
shape predicted by static theory but show a 25 per cent overshoot above the theoretical values. 
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fault trace. Note the increase in amplitude in the direction of rupture propagation. 
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vertical displacement, or maximum particle velocity in the i l  direction, might  be 
plot ted as a function of position on the free surface. For  this rupture  we have plot ted 
contours of the maximum horizontal  particle velocity 

t~H = max[  ~/u12(x, t) + h32(x, t)] (35) 

where ma x[~ /u l  e (x, t ) +  u32(x, ti'] represents  the maximum value of horizontal 
particle velocity at tained at  position x -- (Xl, 0, x3) and at any t ime t during the 
rupture  process (Figure 11). Again we observe the focusing effect of rupture  propa- 
gation as the double lobed pa t te rn  (bilateral rupture)  is peaked at  the ends of the 

~ 

FrG. I1. Free surface contours of dimensionless peak horizontal particle velocity UH resulting from a 
subsonic, strike-slip rupture which initiated at the free surface. 

fault. We have labeled the contours with levels 1 through 9 which represent  the 
percentage values 10 through 90 of the maximum value at tained by any particle on 
the free surface. In dimensionless form, the maximum horizontal particle velocity 
on the surface is 1.235 which converts to 2.64 m/sec  using our  s tandard set of 
parameters:  aE =- 100 bars, ro = 10 km, a = 5.196 km/sec,  u = 2.43 × 105 bars, and 
fl = a/~f3. The  entire free surface is not  shown but  everywhere else UH is less than  
level 1. 
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SUBSONIC RUPTURE NUCLEATING AT DEPTH 

A rupture which nucleates at depth embodies the full three-dimensional character 
of the particle motion. Particles on the free surface experience radiation prior to the 
rupture reaching the free surface. The effective rupture velocity along the free 
surface (the rupture phase velocity) can exceed the P-wave speed. We might also 
expect a breakout phase as the rupture front pierces the free surface, and we might 
expect to see a reflection from the free surface reinforce the particle motion on the 
fault plane at depth (Burridge and Halliday, 1971). 

To assess the magnitude of these effects and to compare results with the subsonic 
rupture which nucleated at the surface, we initiated a rupture at the lowest point 
(0, 10, 0) of the semicircular fault. We assigned a subsonic rupture velocity v -- 0.9ft. 
Since the rupture nucleates at depth, we expect the apparent rupture velocity for 
nodes along the surface to exceed our assigned value of 0.9ft. Using the time elapsed 
between the rupture front first breaking the free surface at (0, 0, 0) and the time 
when it reaches the edge of the fault (10, 0, 0) we calculated an average apparent 
rupture velocity of 1.44a. The effect of this supersonic velocity is to create a nearly 
constant peak particle velocity for Ul along the fault trace. We have also computed 
the particle motion for a rupture with the same fault geometry but with v = 
(Archuleta, 1976); for the instantaneous rupture the particle velocity was nearly 
constant along the fault trace. The nearly constant amplitude of u, in Figure 12 can 
be contrasted with the surface rupture which showed a monotonic increase for hi 
along the fault trace. The ratio of the magnitude of h, for the rupture beginning at 
depth compared to the rupture initiating at the surface ranges between 500 and 40 
per cent, depending on which point along the fault is taken. Since the instantaneous 
rupture (Archuleta, 1976) did not produce particle velocities exceeding the maximum 
u, caused by the surface focus rupture, we could not attribute the values of ul to the 
supersonic rupture phase velocity. The cause of these large particle velocities is a 
combination of the piercing of the free surface by the rupture front, the breakout 
phase, and focusing of energy in the direction of propagation as revealed in Figure 
13, in which particle velocities for points (0, 0, 0) to (0, 9, 0) i.e., particles along the 
~2 axis, are plotted. Compare the general increase in particle velocity magnitude as 
the rupture progresses toward the free surface with Figure 10 for the subsonic 
rupture which initiated at the surface. Until the rupture pierces the free surface, the 
magnitude of the particle velocity parallels the increase we have attributed to 
focusing in the surface focus rupture. The free surface is prominently identified by 
the almost doubling in size of the particle velocity. 

- - . 

Even though Ul is relatively constant along the fault trace, h2 and h3 (Figure 12) 
show a linear trend. Eshelby's (1957) static solution for the displacement component 
~3 is linearly related to the distance along the fault trace, but it is uncertain why/~3 
or u2 show such a linear trend. This linear trend is also evident in the surface focus 
rupture although the slope is less. 

A second effect of the free surface is to generate a reflected phase which manifests 
itself as the long-period bump late in time in Figure 13. In the two-dimensional 
model of Burridge and Halliday (1971) the reflected phase accelerated the particle 
motion. This extra impetus is clearly evident in Figure 14 where we see late in time 
the particle displacement for points (0, 0, 0) to (0, 9, 0) surge briefly before attaining 
its static value. The reflected phase clearly prolongs the particle motion on the fault 
surface at depth. However, the static value of displacement &, for points along the 
fault trace is well fit by the static solution of Neuber (1937)/Eshelby (1957) provided 
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that the effective stress aE is multiplied by 1.2 to obtain the static stress drop ha. 
The multiplicative factor 1.2 is not so different from the 1.25 of the surface origin 
rupture. Although a rupture nucleating at depth has a pronounced effect on the 
particle velocity field, it has almost no effect on the static displacement field. 
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For the purpose of studying the effects of radiation prior to the rupture front 
breaking the free surface, we have plotted Figure 15, the particle displacements and 
particle velocities at 11 locations (0, 0, 5) through (10, 0, 5), points which run parallel 
to the fault trace. The scales in Figure 15 are one-half of the scale for particle 
displacement and one-fifth of the scale for particle velocity in Figure 12, respectively. 
Figure 15 reveals an assortment of interesting phenomena. One of the more inter- 
esting is the presence of the near-field shear motion traveling at the P-wave speed. 
This near-field characteristic shows itself as the small negative phase preceding the 

WIG. 12. Computed dimensionless particle displacements and velocities for 11 positions on the fault 
trace based on a subsonic, strike-slip rupture which nucleated at de_pth. 
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large positive motion clearly seen at position (0, 0, 5). The same near-field phase is 
evident in us at position (10, 0, 0) in Figure 8. This phase has the same radiation 
pattern as a horizontally polarized S-wave hut of opposite sign, i.e., a cos 2~ 
distribution where $ is the azimuthal angle measured from the normal to the fault. 
The dying out of this phase as we examine positions (0, 0, 5) through (5, 0, 5) is 
consistent with a cos 2~ radiation pattern. 
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FIG. 15. Computed dimensionless particle displacements and velocities for 11 positions 5 elements off 
the fault trace. Values are based on subsonic rupture nucleating at depth. 

The best indicator of  phases associated with the rupture front breaking through 
the free surface is the surge in the particle displacement ~ .  The timing of this 
additional positive displacement coincides with an S-wave arriving from the nearest 
point on the fault. In us this phase is clearly seen at positions (5, 0, 5) to (7, 0, 5) as 
the emergent, second, positive peak. The arrival of the S wave is also recorded in/~1 
as a small dip at the peak observed at positions (8, 0, 5) through (10, 0, 5). 

We observe the diffraction of waves by the fault as the static value of ~ is less 
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than the maximum. The static value of ~3 is comparable to ~ for positions (5, 0, 5) 
through (10, 0, 5) whereas the static value of ~2 is nearly zero. Looking at the 
corresponding particle velocities we note that Ul and u~ are comparable with u2, only 
slightly smaller. From these time functions of particle displacement and particle 
velocity we could assume that the ~1 component of motion decays more rapidly 
with distance than do the :~2 and :~ components of motion at least to a distance 
comparable to r0. One can also see from the magnitudes of particle displacement 
and particle velocity that the particle velocity decreases in magnitude more quickly 
with distance from the fault than does particle displacement; this is especially true 
for the $:1 component of motion. 

FIG. 16. Free surface contours of dimensionless peak particle velocity parallel to the fault strike I u~ I for 
a subsonic rupture nucleating at depth. 

To illustrate the behavior of the free surface we have displayed in Figures 16, 17, 
18, 19, the contours of maximum velocity for I ~11, I u21, I u31, and UH [previously 
defined in equation (35)], respectively. In each figure the contours are labeled 1 
through 9 representing the levels 10 per cent of absolute maximum through 90 per 
cent of absolute maximum. The absolute maximum is the largest absolute value of 
the variable being contoured. For example, the largest absolute value of ul anywhere 
on the free surface is 1.932 in dimensionless form, equal to 4.13 m/sec for our 
standard set of parameters for the medium and the fault. Because ul is dominant, 
due to the breakout phase of the free surface coupled with a supersonic rupture 
phase velocity, the contours of maximum horizontal velocity, Figure 19, are quite 
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uniform with no resemblance to the double-lobed pa t te rn  in Figure 11. Th e  values 
of the contours  in Figure 19 are considerably larger than  in Figure 11; in fact, the 60 
per cent contour  in Figure 19 is equivalent to the maximum contour  in Figure 11. 
The  vertical and transverse components  are similar in appearance,  but  the vertical 
component  is required by symmet ry  to be zero for points beyond the ends of the 
fault  and along its strike. The  absolute maximum of u2 is almost  one-half  the 
absolute maximum of u3. An impor tant  aspect of [t t21 and I/t3[ is tha t  both  decay 
with distance less rapidly than  ]ul ]. 

FIG. 17. Free surface contours of dimensionless peak particle velocity normal to the free surface 1~21 
for a subsonic rupture nucleating at depth. 

RUPTURE ANALOGOUS TO FOAM RUBBER EXPERIMENT 

As the final numerical  simulation we sought to reproduce the particle displace- 
ment  measurements  caused by a stick-slip event  on a semicircular fault  in foam 
rubber  (Archuleta and Brune, 1975). This  simulation differs in one major  aspect 
from our previous simulations: the rupture  in the foam rubber  exper iment  was 
primarily unilateral. A unilateral rupture  destroys a symmet ry  condition. We are 
required to use grid everywhere on one side of the fault. Because this problem 
required such a large number  of elements, we had to reduce the number  of elements 
(for budgetary  reasons) on a fault radius from ten to four. Thus,  we have considerably 
less spacial information along the fault. 

Based on the observations, we initiated the rupture  at the free surface at  a 
distance midway between one end of the fault and its center.  We specified an 
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effective stress of 0.0015it and a rupture velocity of 0.74fl (0.74fi appears to be a 
better fit to the data than 0.7fl previously given by Archuleta and Brune, 1975). A 
comparison of the finite element particle displacements, continuous lines, and the 
measured particle displacements, discrete triangles, is shown in Figure 20. Foam 
rubber displacement time functions show a general tendency to start abruptly but 
then change to a more gentle slope. The measured static values agree quite well 
with the numerical results. The major discrepancy is the rise times of the numerical 
results especially near the initiation point and the first points to rupture. The 
numerical particle displacements attain their static values in approximately one-half 

3 the measured time. After the rupture has propagated a distance of about ~ ro, the 
discrepancy in rise times diminishes. We can speculate as to the cause of the 
discrepancy in rise times. Since the measurements were for targets positioned 

FIG. 18. Free surface contours of dimensionless peak particle velocity normal to the fault plane [u3[ for 
a subsonic rupture nucleating at  depth. 

slightly off the fault (a distance approximately ~ ro), particle velocities from the 
numerical simulation must be reduced whereas the static displacements could 
remain unaltered. For example, recall the difference in scales for particle displace- 
ment and velocity for points off the fault in the rupture which nucleated at depth. 
A second conjecture is that  the fault was not in a state of uniform prestress. 
Although the entire fault was subject to an average stress change near 0.15it, locally 
the stress available to accelerate the particles differed from area to area on the fault 
plane. A third alternative is that  the frictional characteristics of foam rubber are 
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velocity or displacement dependent.  In such a case a simple Coulomb-friction 
relationship, such as tha t  used in the finite element method  where the frictional 
shear stress is directly related to the normal  stress, is not  a sufficient representation 
of the frictional behavior. The agreement  between the measured displacement time 
histories and those computed using our earthquake model leads us to consider 
additional physical processes which can influence the rupture. Still the agreement  
is not  so bad tha t  we think our model is entirely inapplicable to our experiments. 

I 1 i r ~ I I F I I I 
i The Maximum '~." ~x(CiO'l/p=)" • 2 .009  

1~'4.2 m/see a=5.2xloSm/sec, ~.2.43xlOlb, cr¢=lOOb 

, I L~J ~ ,~ ,~1  

I ' I L 

' , I I 

7 I ' 

[ ..... :--F ~ , 

i - i  . 

I ! 

FIG. 19. Free surface contours of dimensionless peak horizontal particle velocity UH for a subsonic 
rupture nucleating at depth. 

SUMMARY 

We would like to review the principal results presented in this paper and to 
present research topics which can be approached using our basic numerical scheme. 
Perhaps the major result of this paper is the presentation of a method for simulating 
earthquakes based upon a dynamic, propagating stress drop over a finite plane in a 
three-dimensional, semi-infinite medium. We verified our method by comparing the 
numerical results with Kostrov's (1964) self-similar solution for a constantly ex- 
panding shear fracture in a full space. 

To illustrate the method we simulated two strike-slip earthquakes .for which the 
initial conditions differed only in the hypocentral location. Nevertheless, the ensuing 
near-field ground motion differed considerably both in amplitude and distribution. 
The rupture which nucleated at the free surface showed a pronounced focusing in 
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the direction of rupture propagation. Particle velocities attained values on the order 
of 2.5 m/sec for a fracture with a 100 bar effective stress propagating with a velocity 
of 2.7 km/sec over a fault 10 km in radius, embedded within a Poisson solid with 
shear-wave velocity of 3 km/sec. 

The ground motion for the rupture which initiated at depth was dominated by 
the amplification caused by the rupture piercing the free surface. The free-surface 
distribution of particle velocity revealed a uniform distribution with maximum 

COMPARISON of DISPLACEMENTS 

from FOAM EXPERIMENT(a,) and FINITE ELEMENT COlE(-) 

• : . , s  j : ,  .,?;:'.:.*. ..,,: C: . ' ¢  2 "  ..j'4 

.,---"" ~"'. ,I:" ..;': Y " :" .- "-'~" 

FIG. 20. A comparison of foam rubber displacement time histories (triangles) with computed particle 
displacements, u~ forpoints along the fault trace. 
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FIG. 21. A pictorial view of four possible intersections of the rupture front and the finite element 
boundaries. 

values on the order of 4 m/sec. Examination of the particle velocity on the fault 
plane at depth showed that  the rupture did focus energy in the direction of 
propagation similar in magnitude to the rupture which initiated at the free surface. 
The distribution and magnitude for the near-field particle velocities were attributed 
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to the amplification caused by the free surface and the apparent supersonic rupture 
velocity along the free surface. The distribution of static displacements did not vary 
significantly from those produced by the surface nucleation. 

The method allows many possibilities for future work some of which we have 
already begun. We can examine effects such as nonuniform stress, spacially varying 
friction, normal and thrust faulting, corner frequency relationships, structural het- 
erogeneities, and different failure mechanisms such as fracture energy or velocity- 
dependent friction. Naturally we shall attempt to synthesize strong motion records 
from earthquakes such as the 1966 Parkfield (Archuleta and Day, in preparation) 
and 1940 E1 Centro. 
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APPENDIX I 

C A L C U L A T I N G  N O D A L  F O R C E S  W H I C H  R E S U L T  F R O M  AN E F F E C T I V E  S T R E S S  

Basically we select a point within the specified 0E for the nucleation of the 
rupture. The fault plane E consists of faces of elements as seen in Figure 2. Having 
specified the hypocenter and a rupture velocity, we advance the rupture front a 
distance r = vAt, where At is the time step so that after N time steps, r = vNht.  As 
the rupture front encompasses more area of the fault plane, we relax the shear stress 
on the newly fractured area. The change in shear stress is composed of two parts. 
One part is the stress caused by prior radiation; the other part is the effective stress. 
The force arising from the prior radiation stress is accounted for naturally in the 
finite element method through the stiffness matrix in equation {25). The change in 
shear stress related to the effective stress is denoted by • and must be converted 
from a traction to a nodal (particle) force Fn. In general • is given by 

¢(x, t) -- (aE cos 0, o~ sin 0, 0) (A1) 

where tan 0 = sz(x, t)/sl (x, t). The force due to v(x, t) that is applied to node n is 

F. = ~ Is  ¢(t) ane(x) Us, 
e=l ~lt) 

(A2) 

where ane(x) is the appropriate interpolation for node n throughout adjacent element 
e. The ith component of displacement ui(x, t) within an element e is given as the 
summation of the nodal values Uin(t) weighted by some interpolation function 
a#(x) 

ui(x, t) = ane(X)Vin(t). (A3) 

The sum in equation (A2) extends over those elemental areas which are contiguous 
with the node n. The integration includes only that part of the elemental area which 
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is within both the rupture front and within the geometrical fault boundary shown as 
the cross-hatched area in Figure 2. For a node which has elemental areas that  are 
completely within the geometrical fault boundary and within the rupture front, the 
effective nodal force is 

F n  = o E . A e ( 1 ,  O, 0) (A4) 

where A e is the area of one element. The details for calculating the effective force 
using an arbitrary area So ~ weighted by the interpolation functions are given below. 

We wish to evaluate equation (A2). We are assuming that  the finite element is a 
rectangular brick, and that everywhere within the fault area each element is identical 
in size and shape to every other element in the fault area. These restrictions could 
be relaxed, but they simplify the algebra. At first we shall limit our discussion to the 
geometry shown in Figure 2 in which four elemental areas contribute to the effective 
nodal force, ~e = 4. In our finite element method we use a bilinear interpolation 
function 

an"(x) = bl + beXl  "4" b3x2.4- b4XlX2. (A5) 

We let the position of the node n at which we wish to calculate Fn be (~, x2, 0) at 
some time t. The four interpolation functions are 

a n  1 = 1 - ( X l  - X l ) / A X l  - ( x 2  - : ~ 2 ) / A x 2  -I- 

an 2 = 1 - -  (.YCl - -  X 1 ) / A x 1  --  (X2 - -  fC2)/mx2 + 

an  3 = 1 -- (,~1 = X l ) / A X l  -- ( X 2 - -  x2) /AX2"4-  

an  4 = 1 - ( x l  - J:I)/Axl - (:i:2 - x 2 ) / A x 2  + 

(Xl  - -  fff l)(X2 - -  /~2) 
(A6) 

hXlhX2 

(~1 - x ~ ) ( x 2  - ~) 
(A7) 

z ~ x l A x 2  

( X l  - -  X l ) ( ' ~ 2  - -  X2) 
(AS) 

~ k x I A X 2  

(X l  - -  Jh)(SC2 - -  X2) 
(A9) 

AxiAx2 

subject to the conditions 

whenever 

o r  

a n e ( x )  = O, e = 1,  4 (A10) 

x l  >= ~cl + h X l  (All) 

x2 _--> ~2 + Ax2 (A12) 

where Axl and Ax2 are the widths of the element in the i l  and z~2 directions, 
respectively. 

The elemental areas which contribute to the integral are determined by the 
rupture front which is the locus of points (xl, x2) satisfying 
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(x, - x , ' )2/v12t 2 + (x2 - x2')2/v22t 2 = 1 (A13) 

where (Xl', x2') is the origin for the rupture and v, and v2 are the components of the 
rupture velocity in the :~1 and :~2 directions, respectively. To facilitate the algebraic 
manipulations, we transform to a new coordinate system whose origin coincides 
with the rupture origin 

Xl = Xl - Xl', (A14a) 

x2 = x2 - x2'. (A14b) 

(We will not introduce a new variable for the transformed system. The interpolation 
functions remain unchanged.) 

We assume tha t  ¢ does not depend on position within an element; thus, we can 
factor ~ outside of the integral. With this application we write the expression for the 
effective force as 

4 

F .  = ~ ~" f f ae(xl, X2). (A15) 
e=l  

Each double integral in the sum involves four simple integrals of the type 

~ = f f d~ ~x~, 

I3 = f f dxl dX~ x2, 

14 = f f dxl dX2 xl x~. 

(A16) 

(A17) 

(h18) 

(A19) 

The limits of integration depend on the intersection of the rupture front with the 
boundaries of the element. The four types of intersections are pictured in Figure 21. 
The most general type of intersection is shown in (b) which we will use as an 
example in evaluating the integrals 11, /2, I.~, and /4. Depending on the proper 
interpolation function, the contribution (b) makes toward the effective force is 

where 

I = ¢ dx l  dx2 ai(x) + ¢ dx ,  dx2 ai(x), 
~:2 

X l '  "~" U 1 / V 2 % / U 2 2 t  2 - -  (:~2 4" AX2) 2, 

(A20) 

(A21) 

X l  ~" V l / V 2 ~ V 2 2 ~ 2  - -  :~22 (A22) 

and 

= v 2 / v ,  J v } t  - x1 

Using the above limits of integration the integrals 11,/2,/3, and /4  become 

(A23) 
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11 -~ (Xl'  --  ~h)Ax2 -- (Xl -- X~')X2 + U2/2V1 {Xl ~Vl  2~ -- Xl 2 

- x 1 ' ~ v 1 2 t  2 - x ,  '2 + v~2t 2 ( s i n - '  Ycl /v , t  - s i n - '  x , ' / v l t ) } ,  (A24) 

12 = 1 ~ ,2 x 2 - 2 ) h x ~  (~,2 _ x , 2 ) ~ 2 }  It-'~l -- 
--  V2/3Vx{(Vi'~t 2 --  ~ 2)3/2 __ ( V 2 ~  __ X1,2)3/~, (A25) 

13 = i { ( x , '  - ~:1) (2~:2~x2 + (~K~2) 2) -- (Xi -- XI')X22} 
+ V22/2V12{V12~(Xl -  XI') -- 1 - 3 ~(X, -- X1'3)}, (A26) 

/4 = 1 {(Xl,2 __ ~ 2)(2~2Ax2 + (Ax2)2) _ (~12 _ Xl,2):~22} 

+ v22/8v,2{2v12t2(~,  2 - x l  ''2) - (~14 - x, '4)}. (A27) 

U s i n g  t h e  a p p r o p r i a t e  coe f f i c i en t s  (bl,  b2, b3, b4) w h i c h  d e p e n d  o n  t h e  p a r t i c u l a r  

i n t e r p o l a t i o n  f u n c t i o n ,  t h e  i n t e g r a l  i n  (A20) b e c o m e s  

I = T (b , I ,  + b212 + baI3 + bJ4 ) .  (A28) 

A f t e r  t h i s  c a l c u l a t i o n  is r e p e a t e d  for  e a c h  e l e m e n t a l  a r e a  w h i c h  is c o n t i g u o u s  to  t h e  

n o d e  a t  (~,, x2, 0), t h e  r e s u l t s  o f  t h e  c a l c u l a t i o n s  a r e  a d d e d  to  g ive  t h e  e f fec t ive  

n o d a l  force  w h i c h  is e q u i v a l e n t  to  a n  e f fec t ive  s t r e s s  a p p l i e d  to  t h e  e l e m e n t a l  a reas .  
T h e s e  c a l c u l a t i o n s  a r e  p e r f o r m e d  a t  e a c h  t i m e  s t e p  for  e v e r y  n o d e  w i t h i n  t h e  r u p t u r e  

f ron t .  
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