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DYNAMIC RUPTURE IN A LAYERED MEDIUM: THE 1966 PARKFIELD 
EARTHQUAKE 

BY RALPH J. ARCHULETA AND STEVEN M. DAY 

ABSTRACT 

A method for computing ground motion from a propagating stress relaxation 
in a vertically heterogeneous medium was developed wherein computational 
efficiency is enhanced by separating the source, a three-dimensional calculation, 
from the wave propagation, a two-dimensional calculation. As an application of 
this technique, displacement-time histories were computed corresponding to 
those determined from accelerograms recorded during the 1966 Parkfield, 
California earthquake. On the basis of these comparisons, an effective stress of 
25 bars, an average slip of 43 cm, and a moment of 2.32 x 1025 dyne-cm were 
determined for the Parkfield earthquake. 

INTRODUCTION 

In the analysis of ground motion resulting from an earthquake, it is always 
possible to match the recorded motion with a synthetic record. The more records 
that  exist, the more difficult the match. A perfect match between the recorded data 
and synthetics does not guarantee a unique interpretation of the earthquake 
mechanism. Motion resulting from an earthquake is a convolution of the earthquake 
mechanism and the propagation path between source and receiver. In generating a 
synthetic record, one can assign complexities to the earthquake mechanism that in 
fact arose from the propagation path and vice versa. This tradeoff between source 
and path can be limited where the elastic properties of the medium are indepen- 
dently determined, e.g., by a seismic-refraction profile. It is easy to see how 
inferences as to the nature of an earthquake mechanism might be strongly biased 
by the assumptions used in the analysis of an earthquake. 

In this paper is described a method for generating synthetic records of the time 
history of ground motion produced by an earthquake. Bearing in mind the non- 
uniqueness of any synthetic record, the primary guideline is to maximize the physics 
of an earthquake in the model and the description of the medium in the propagation. 
The earthquake mechanism is represented as a propagating stress relaxation over a 
finite fault and the medium as a horizontally layered elastic continuum. A three- 
dimensional finite element method is used to compute the displacement disconti- 
nuity associated with the faulting; a two-dimensional finite element method is used 
to compute the Green's functions for the medium. Using these two parts in the 
elastodynamic representation theorem, the near-field ground displacement is com- 
puted. As an example of this method, a simulation of the 1966 Parkfield, California 
earthquake is made. In this process, the best match between the data records and 
our synthetic records are not sought by adjusting the free parameters in our method. 
Rather, the closeness of the match is viewed as an illustration of how a rather simple 
physical description of an earthquake mechanism coupled with a reasonable ap- 
proximation to the medium produces realistic ground motion. 

PHYSICAL MODEL 

The physics of the earthquake mechanism is simulated by a propagating stress 
relaxation with the properties of the medium assuming homogeneous horizontal 
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layers of elastic material overlying a half-space. Following Archuleta and Frazier 
(1978), the earthquake mechanism is simulated by specifying: (1) the hypocenter, 
the geometry of the final fracture surface, and the constitutive properties of the 
medium; (2) a rupture velocity, v, that determines the evolution of the fracture 
process; (3) an initial stress tensor S°(x) in the medium from which one can derive 
the initial tractions on the fracture plane; and (4) the frictional tractions that  will 
oppose the motion as the two sides of the fault slip past each other. 

Rupture Process. The rupture initiates at the hypocenter, i.e., the stress drops 
from its initial value to the sliding friction value. The stress relaxation spreads over 
the fault plane with the given constant velocity, assumed to be less than the shear- 
wave speed B of the medium. As the rupture front encompasses new area of the 
fault plane, this new area undergoes an immediate stress relaxation, a dynamic 
stress drop--the sum of the effective stress (the difference between the initial stress 
and the sliding frictional stress), and the stress due to prior radiation. (Stress 
relaxation or stress buildup refers only to the components of the stress tensor 
tangent to the fault plane.) The stress due to prior radiation is a critical element of 
the stress relaxation mechanism and is absent from kinematic models. Prior radia- 
tion stress is a consequence of the rupture velocity being less than the shear-wave 
speed of the medium. As the rupture propagates, the changes in the stress field are 
transmitted throughout the medium with the speeds of the elastic waves of the 
medium. Since the rupture is subsonic (v < B) and there is no tangential displace- 
ment on the fault plane until the rupture front arrives, stress ahead of the rupture 
front and on the fault plane increases above its initial value as stress relaxation 
occurs on other parts of the fault plane. The focusing of energy in the direction of 
propagation is a combination of both directivity (Ben-Menahem, 1961) and prior 
radiation stress. 

The time when a point on the fault surface undergoes a dynamic stress drop is 
precisely determined by its distance from the hypocenter and the rupture velocity. 
The time when a particle attains its static displacement, however, is determined by 
the instantaneous stresses and inertial forces acting on the particle. When the force 
due to the instantaneous stress plus the force due to inertia acting on a particle is 
less than the force due to sliding friction, the slip velocity is set to zero and the 
dislocation is held fixed (i.e., the fault is healed). Without healing, the slip velocity 
would reverse its direction, and sliding friction would become the driving mechanism 
for the equations of motion. 

A major difficulty in the computation of the slip function is the implementation 
of the stopping criterion. Because the numerical method of Archuleta and Frazier 
(1978) depends on discrete time intervals, driving forces in the medium and the force 
due to sliding friction are not simultaneously known. In order to compare these two 
forces at the same time, two coupled nonlinear equations are solved (see Appendix). 

M E T H O D  

The method for computing the complete ground motion is based on dividing the 
problem into two parts: (1) computing the fault slip function and (2) propagating 
the waves from source to receiver. The first procedure requires a fully three- 
dimensional numerical treatment, whereas the second is reduced to a two-dimen- 
sional computation. By partitioning the problem in this manner rather than directly 
computing ground motion from a three-dimensional calculation, the cost of the 
overall computation is reduced by two orders of magnitude. The basis for our 
approach is the elastodynamic representation theorem (Maryuama, 1963; Burridge 
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and Knopoff, 1964). In a medium with spatial coordinates defined relative to 
orthonormal basis vectors 51, 52, and 5s the displacement of a particle 

U m ( X ' t ) = f  f E '  (r) n(t;) 'T(m)(f; 'x;t ' t) 's(~'t)dtd~' (1) 

where Um (X, t) is the mth component of displacement for a particle located at x at 
time t; and s(~, t) is the discontinuity in displacement at position ~ at time t'. ~(t ' )  
is the area over which s(~, t')[s(~, t) = O/Ot s] is nonzero; ri(~) is a unit vector normal 
to ~ (t') at position ~; T (m) (~, x; t, t) is a stress tensor at position x and time t resulting 
from a unit force located at ~ and time t '  acting in the mth direction. The ij 
component (relative to 51, 52, 53) of the tensor T(m)(~, x; t', t), hereafter T m, is given 
by 

T I~n) CijktGkm,l(~, x; t', t) (2) 

where i, j, k, l, m = 1, 2, 3 and summation over repeated indices is assumed. Ciykz is 
an elastic tensor, and Gmk,z(~, x; t', t) is the spatial derivative in the xz direction of 
the mk component of the Green's function solution G (~, x; t', t) for a particle located 
at x and time t due to a point force in the mth direction located at ~ acting at time 
t. 

If one were to specify s(~, t ') before the rupture occurs and without regard to the 
tractions acting on the fault during the rupture process, the earthquake would be 
simulated as a kinematic source. Here, s(~, t '), determined by a propagating stress 
relaxation is used; hence, the earthquake is simulated as a dynamic source mecha- 
nism. The Green's function G(~, x; t', t) is known analytically for a homogeneous 
full-space and half-space; thus, T (m) is readily calculated for these idealized geome- 
tries. For an inhomogeneous medium, such as a horizontally layered medium, 
however, the Green's function is not known analytically and must be computed for 
a specific structure. Once s(~, t ') and T (~) are known, the integration in equation (1) 
is performed numerically for each observation point. 

The procedure we have employed for synthesizing near-field ground motion 
minimizes the computing cost for a given frequency resolution of ground motion. 
Since the frequency resolution of the computed slip function is about four times 
better than the normal finite element resolution (Archuleta and Frazier, 1978), a 
two-dimensional grid is used in computing T (m) with four times the spatial density 
used in the three-dimensional grid, thereby increasing the frequency resolution of 
the elastic waves propagated into the medium without a commensurate increase in 
cost. 

Computing the Green's function [or T(~)]. Note that a horizontally layered 
medium does not affect the azimuthal radiation pattern generated by a point force. 
In a polar coordinate system, (~, 0, £) where £ is the downward vertical direction, 
only the ~ and ~ dependence of T <~ must be computed. Hence, the computation of 
T (m) is two-dimensional, whereas s(~, t) is three-dimensional. 

To compute T (m), a vertical point force is applied at the origin of the cylindrical 
system in which the elastic properties of the medium vary only with depth (z). The 
finite element method is used to determine a stress tensor T (z)(r, z) throughout the 
medium. Then, a horizontal point force is applied at the origin to compute T(r)(r, z). 
Using T (z) and T (r} plus a priori knowledge of the azimuthal component, T ~"~) is 
completely determined for the medium. 
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APPLICATION: 1966 PARKPIELD EARTHQUAKE 

The 1966 Parkfield, California earthquake (June 28, 4:26:14 GMT) is well-known 
for the quality and quantity of the strong-ground-motion records it produced (Cloud 
and Perez, 1967). Many workers (e.g., Aki, 1968; Haskell, 1969; Boore et al., 1971; 
Trifunac and Udwadia, 1974; Anderson, 1974; Levy and Mal, 1976) have attempted 
to match the displacement records with synthetic records generated by a simulation 
of the Parkfield earthquake by specifying a propagating displacement discontinuity 
over a prescribed fault plane embedded within a homogeneous full-space. The effect 
of traction-free surface has usually been accounted for by doubling the displacement 
amplitude, although Levy and Mal (1976) rigorously accounted for the free surface 
by employing the Green's functions for a half-space. Here the Parkfield earthquake 

\ ~T PARKFIELD EARTHQUAKE 
• ...... .L~I~ 04 26 GMT JUNE 28,t966 

EPICENTER_~. + l l 
x ~ .  iOkrn 
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~ 
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FIe. 1. The projected trace of the rupture relative to the location of the strong-motion accelerometers. 

is simulated as a propagating stress relaxation over a prescribed fault plane em- 
bedded within a horizontally layered medium. A three-dimensional finite element 
method is used to determine the displacement discontinuity associated with the 
faulting; then, near-field seismograms are computed by means of the elastodynamic 
representation theorem. We seek to determine to what extent a simple propagating 
stress relaxation model of faulting can reproduce significant features of the near- 
field observations. 

A good summary of the Parkfield earthquake and of early attempts to match the 
displacement records is given by Trifunac and Udwadia {1974). The 1966 Parkfield 
earthquake was primarily a right-lateral strike-slip rupture occurring on the San 
Andreas Fault (McEvilly et al., 1967). The aftershocks define a plane dipping 86°SW 
and striking N39°W (Eaton et al., 1970). The aftershocks extend from the surface to 
a depth of about 14 km and over a length of about 37 km (Eaton et al., 1970). 
Rupture nucleated at 35 ° 57.3'N, 120°29.9'W (McEvilly, 1966) and propagated 
primarily to the southeast toward the Cholame-Shandon array of accelerometers, 
henceforth referred to as stations 2, 5, 8, 12, and Temblor (see Figure 1). The 
component of particle displacement approximately perpendicular to the strike of 
the fault (hereafter referred to as the transverse component) had the largest 
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amplitude at each station (Housner and Trifunac, 1967). Surficial displacement of 
4.5 cm occurred at the southeastern end of the fault within 10 hr of the earthquake 
(Allen and Smith, 1966). In the year following the earthquake, accumulated displace- 
ment parallel to the strike of the fault was measured within 100 m of the fault, trace 
was 21 cm (Smith and Wyss, 1968). The geology near the fault and the accelero- 
graphs indicate structure varying with depth (Eaton et al., 1970) and horizontal 
structure (Aki, 1969), which clearly influenced the recorded ground motion. 

On the basis of the aftershock distribution (Eaton et al., 1970), a fault plane 30 
km long and 6 km wide between 3- and 9-km depth is specified. The surface trace of 
the fault plane is shown in Figure 1 along with the location of the accelerograph 
stations. The strike of the fault is assumed to be N40°W with a dip of 90 °. The 
hypocenter is placed at the north end at a depth of 7 km. Rupture spreads over the 
prescribed fault surface at a velocity of 3.1 km/sec (0.9B), propagating toward the 
accelerograph stations. The effective stress oe is assumed to be constant over the 
fault plane. As the numerical solution scales with oe, (Archuleta and Frazier, 1978) 
the effective stress is determined by matching synthetic and observed peak-displace- 
ment amplitudes for the N85°E component at station 5. The effective stress 

T A B L E  1 

ASSUMED PARKFIELD STRUCTURE 

Depth P Wave S Wave Shear 
Range (km/sec) (km/sec) Modulus 
(km) (bars) 

0-2 3.0 1.73 0.5 × 105 

2-4 5.0 2.89 1.9 × 105 
4-o0 6.0 3.46 3.09 × 105 

determined in this manner is 25 bars, and the results presented have been scaled to 
this value. As the curves of Figure 4 show, the static-stress drop over most of the 
fault plane is nearly identical to the effective stress. 

Near the fault, the detailed structure given in Eaton et al. (1970) is approximated 
by two layers over a half-space (Table 1) for the wave propagation calculation. For 
the three-dimensional computation of the slip function, a homogeneous half-space 
is used with the same material properties as the underlying half-space given in Table 
1. Since most of the prescribed fault surface lies in the underlying half-space, this 
simplification is probably not important for defining the slip function. In any case, 
beca,~se of the coarse griding of the source computation, there would have been 
little resolution of the layers. 

Motion on the fault  surface. To illustrate the particle motion on the fault, Figures 
2 and 3 show the particle displacements and particle velocities along the fault at the 
depth of the hypocenter. Both the particle displacement and particle velocity 
increase in the direction of the rupture propagation. Note that the increase in 
amplitudes does not persist all the way to the end of the fault. The amplification of 
the particle velocity exists for a distance equivalent to about two widths. The width 
of the faulting area directly affects the time duration of the particle velocity. Once 
the area over which the stress can relax is restricted, the effect of the boundary is to 
limit the particle velocity in amplitude and time duration. The plots of Figure 5 
clearly demonstrate that only a small part at the total fault plane acts at any given 
time. By matching the peak amplitude of the synthetic seismogram with the 
measurement at station 5, it is found that oe = 25 bars, thus giving an average 
displacement of 2.5 cm (slip = 43 cm). 

In Figure 4, the stress component $3~ was plotted as a function of position along 
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the fault at successive times during the rupture process. The discrete points on the 
fault are all at the same depth as the hypocenter. The primary feature of Figure 4 
is that  the stress relaxes to the value of sliding friction. There is marked finite 
increase in the stress S~1 above the initial value S°1 ahead of the rupture front. 
Although most of the fault remains at the frictional stress level, the southeastern 
end of the fault relaxes beyond the frictional level. This excess relaxation is 
attributed to the abrupt ending of the fault; i.e., no slip is allowed to occur outside 
the prescribed final fault boundaries. 

Healing of the fault is illustrated in Figure 5. The shaded area represents that  
part of the fault where slip is occurring at the time shown at the right. For example, 
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o.o '--.-- ~ ( 0 , 7 , 0 )  
f 

( 4,7, O) 

( 8 , 7 , 0 )  
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~ (16,7, O) 

- -~ ~ (2o ,7, o) 
F 

40.0 - - /  ~ ~  (24,7,0) 

~ O0 ~ - - -  (28 ,7 ,0 )  

o 1o 2o o lo zo io ao 

Time (see) 

Fro. 2. Three components of particle disp|acement on the fault surface extending along the stake of 
the  fault and at  the  dep th  of the  hypocenter .  U1 is parallel to the  strike of the  fault, U2 is vertical, and/2"3 
is normal  to the  fault plane. 

at 6 sec after rupture initiation, that  portion of the fault between about 6 and 18 km 
has a nonzero slip velocity. During the rupture, only part of the total fracture surface 
has a nonzero slip rate. As the fracture propagates, it creates new surface area that  
has a nonzero slip rate, but the boundaries of the fault are causing the fault to heal 
behind the rupture front, thereby producing a slipping section that propagates along 
the fault similar to a model proposed by Mansinha (1964). Although a real earth- 
quake may not have such well-defined boundaries, some boundary does limit the 
width of faulting. Because there is no compelling evidence of breaking the free- 
surface depth during the 1966 Parkfield earthquake, it is reasonable to assume that  
rupture did not extend to the surface during the time of rupture propagation. 
Certainly in cases where the length of faulting is much greater than the depth, e.g., 
the 1906 California earthquake, it seems physically unreasonable to require that slip 
at the hypocenter continues for the full duration of rupture. Some type of a moving 
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section of nonzero slip rate, is then appropriate for earthquakes with large length- 
to-width ratios. Rupture reaches the point farthest from the hypocenter after 9.8 
sec, and the entire fault has healed by 10.4 sec. 

Free surface deformation. Before examining the individual displacement records 
at stations 2, 5, 8, and 12, the overall deformation of the free surface is considered. 
As a measure of this deformation, contour plots of the maximum transverse particle 
velocity (Figure 6) and the static displacement parallel to the strike of the fault 
(Figure 7) were constructed. As a reference for the contours, a selection was made 
of the maximum value attained anywhere on the free surface, as indicated in the 
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FIG. 3. The three components of particle velocity corresponding to the displacements shown in Figure 

figure caption. The contours are then drawn as 90, 80, 70 per cent, . . .  of this 
maximum. They are approximate in that particle motion is appropriate for a 
homogeneous half-space. The contours thus primarily represent the body-wave 
contribution to the motion. The maximum scales directly with aE, the effective 
stress. 

The contours representing the maximum values of the transverse particle velocity 
are shown in Figure 6. Two features stand out: (1) the focusing of energy in the 
direction of propagation and (2) the broad maximum at the stopping end of  the 
fault. The focusing is less evident in the parallel-particle velocity. The broad 90 per 
cent contour in Figure 9 encompasses both stations 2 and 5. If the effect of layering 
is neglected, both stations would receive nearly the same peak-particle velocity. 
Station 2 was chosen to be right above the stopping end. 
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(Before the rupture starts, every point is at  level S~] .) As the rupture propagates along the strike, the 
shear stress relaxes to the sliding friction. The increase in S~: above the level S°: is produced by prior 
radiation described in the text. The dashed line at 10.4 sec represents a time immediately preceding the 
final healing of the fault. The snapshot is at  12.1 sec, after the fault has healed everywhere, and represents 
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FIa. 5. Growth of the rupture zone with time. The s h a d e d  a r e a  represents tha t  part  of the fault over 
which the slip is occurring. The fault heals behind the rupture front. The length of fault on which slip is 
occurring is roughly equal to the width of the fault. 

In Figure 7, the contours for the component of static displacement parallel to the 
strike of the fault are shown. Note that the maximum value occurs approximately 
6 to 8 km off the fault (within the 90 per cent contour). The relative motion between 
the two sides of the fault caused by the simulated earthquake is approximately 16 
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FIG. 6. Contours of normal component of particle velocity maxima. Solid triangle is at the epicenter, 
and solid square designates the southeast end of the projected fault trace. Contour labels 9, 8, 7, . . .  
represent 90, 80, and 70 per cent of the maximum value reached anywhere on the free surface. In this 
case, the maximum is 6.9 cm assuming a 25-bar effective stress. 

FIG. 7. Contours of the parallel component of static displacement on the free surface. The maximum 
is 6.9 cm. See Figure 6 caption for explanation of contour labels. 
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cm (using the 90 per cent contour). Sixteen centimeters is quite close to the geodetic 
value of 20 cm found by the California Department of Water Resources, also 6 to 8 
km from the fault and in approximately the same area encompassed by the 90 per 
cent contour. Taking into account that  the half-space has a greater shear modulus 
than the near-surface layers, the computed values were expected to be low. Note 
also the strain concentration near the strike of the fault, which results directly from 
the fact that  the rupture surface is buried. If all the strain were relieved, then the 
total cumulative displacement near the center of the strike would be about 17 cm, 
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Fro. & Recorded (sol id l ine)and synthet ic  (crosses) displacements for  s tat ion 2. 

in good agreement with the 21 cm of postseismic relative displacement found by 
Smith and Wyss (1968). 

From these admittedly rough approximations to the actual ground motion, certain 
conclusions can be drawn. The creep measurements following the 1966 Parkfield 
earthquake are consistent with a rupture that  did not reach the surface, thereby 
concentrating strain in the upper kilometers. The transverse component of motion 
dominated the free-surface motion. The accelerometers were situated to receive 
nearly a maximum in ground motion, assuming our fault geometry is approximately 

correct. 
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S t a t i o n s  2, 5, 8, a n d  12. By the curves of Figures 8, 9, 10, and 11, the observed 
(solid line) and synthetic (crosses) displacements at stations 2, 5, 8, and 12 can be 
compared. The displacement data comes from twice integrating the instrument- 
corrected accelerograms and have been bandpassed using an Ormsby filter, fc = 0.12 
Hz and fT = 0.10 Hz (Trifunac, 1971). The same filter was applied to the synthetic 
records. In order to minimize any error due to numerical dispersion, the synthetic 
records were low-passed with a cut-off frequency of 0.5 Hz. The same low-pass filter 
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FIG. 9. Recorded (solid line) and synthetic (crosses) displacements for station 5. See Figure 11 caption. 

was applied to the data. Thus the data and synthetics are compared within the 
same frequency band. Since absolute timing is not available for the observed records, 
the times shown in Figures 8 to 11 are relative to the trigger times of the instruments. 
The time origin of the synthetic records were shifted for each station to obtain the 
best agreement with the observed records (at any given station, of course, all three 
components are shifted by the same amount). In so doing, inferences relative to the 
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earthquake origin time were made with trigger times of 8.2 sec at station 2, 6.2 sec 
at station 5, 9.5 sec at station 8, and 8.7 sec at station 12. 

Taken as a group, the curves of Figures 8, 9, 10, and 11 show two encouraging 
aspects: (1) at a given station, relative amplitudes, and to a considerable degree, the 
phases, have been reproduced; and (2) the relative amplitudes were matched fairly 
well among the stations. Overall, the agreement during the first 12 sec or so is 
satisfying; in detail, some discrepancies are obvious. 
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Fro. 10. Recorded (solid line) and synthetic (crosses) displacements for station 8. 

Station 2 deserves particular consideration. Note from Figure I that  the fault was 
placed such that  its surface projection lies slightly to the southwest of station 2. 
This is contrary to geomorphic evidence; surface breaks associated with the San 
Andreas Fault are observed several hundred meters northeast of station 2. This 
slight adjustment of the fault plane was required in order to obtain agreement 
between the synthetic and observed waveforms in the vertical component at station 
2. The polarity of the synthetic vertical record would be inverted if the fault-plane 
projection, a nodal plane for vertical motion, coincided with the mapped surface 
trace. The small shift of the fault has no effect on the transverse component of 
motion (parallel to the fault normal) since that  component is symmetric with respect 
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to the fault plane. One explanation for the polarity of the vertical component would 
be that  the surface break does not coincide with the surface projection of the buried 
rupture plane. An alternative explanation would be that the surface break actually 
does represent the surface projection of the buried plane of rupture, but a lateral 
contrast in seismic velocities across the fault has slightly distorted the radiation 
pattern. Such radiation pattern distortion has been documented by McNaUy and 
McEviUy (1977} for other sections of the central San Andreas and interpreted by 
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Fro. 11. Recorded (solid line) and synthetic (crosses) ~splacements ~ r  sta~on 12. 

them in terms of lateral refraction. Either explanation seems adequate to explain 
the initial part of the waveform of the vertical component at station 2. 

For the NE component at station 2, observed and synthetic displacement records 
are nearly identical in maximum peak-to-peak amplitude but disagree by about 35 
per cent in maximum displacement. For the synthetic records, the maximum 
transverse displacement at station 2 exceeds that at station 5 by about 50 per cent 
(after accounting for accelerometer orientation). This enhancement at station 2 is 
an effect of the layering, since the uniform half-space results have similar transverse 
displacement maxima at stations 2 and 5. 

Unaccounted for by the simulation is the long-period motion at station 2 beginning 
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at about 12 sec. The disturbance has an amplitude of about 4 cm on the vertical 
component and 2 cm on the transverse (NE) component. Such an arrival, with 
comparable amplitudes in both transverse and vertical components, absent in the 
synthetics, apparently cannot be explained without recourse to effects of lateral 
heterogeneities in earth structure. Source complexity, within the prescribed fault 
plane, is an inadequate explanation, since, in a plane-layered structure, station 2 is 
nearly a node for vertical motion for both strike slip and dip slip. 

In particular, because of the similarity of amplitude of the two components at 
station 2, it seems that  no explanations can be made concerning the late-arriving 
phase as low group velocity surface waves generated by shallow slip on a distant 
segment of the fault. The long period of the phase also argues against shallow slip 
as the mechanism. Similar late-arriving phases, with about the same amplitude, 
occur at the other stations and are absent in the synthetics. The possible role of 
instrumental or processing error in explaining these late-time waveforms were not 
investigated. 

In general, the synthetics seem to have a slightly higher frequency content than 
the data. A slower rupture velocity or slower surface layers might improve the 
agreement somewhat. 

SUMMARY 

A procedure for synthesizing earthquake ground motion was described incorpo- 
rating both a dynamic model of faulting and the effects of geological structure. The 
key to computational efficiency is the partitioning of the problem into a source 
calculation and a wave-propagation calculation. It is evident that  even though 
computation of the source function requires a three-dimensional treatment, the 
propagation of waves with a reasonable frequency resolution is not only expensive 
in three dimensions but also unnecessary. By observing that the azimuthal compo- 
nent of the radiated field from a double-couple point source is known and is not 
coupled to the radial or vertical components, the wave propagation was reduced, 
i.e., the computation of the Green's function in our prescribed layered medium, to 
a two-dimensional problem. 

As an application of this method, an attempt was made to synthesize the near- 
field displacement records of the 1966 Parkfield earthquake. Although the data was 
not reproduced in detail, synthetic records were produced that were in overall 
agreement with the data. On the basis of this agreement, estimates show that  the 
1966 Parkfield earthquake had an average slip of 43 cm with an effective stress of 25 
bars. Assuming a shear modulus of 3.0 × 1011 dyne/cm 2, the seismic moment was 
approximated to be 2.3 x 1025 dyne-cm. This moment can be compared with the 
moment estimate of Tsai and Aki (1969) which ranged between 0.9 and 2.1 x 1025 
dyne-cm. Source parameters determined by other researchers are compared in 
Table 2. Undoubtedly, earthquakes in general and the Parkfield event in particular, 
involve a much more complicated stress relaxation process than the simple one 
prescribed in this study. The calculation described here can be viewed as a starting 
point for more detailed models of faulting. 
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APPENDIX 

A difficulty arises in the three-dimensional numerical scheme for treating fric- 
tional sliding when the instantaneous sliding direction is not restrained a priori. 
Physically, the frictional traction at a point on a slip surface should be required to 
contribute an acceleration in the direction opposed to the instantaneous slip velocity. 
However, application of this criterion in numerical time-stepping schemes is not 
straightforward because the particle velocity and acceleration are centered at 
different distinct times. This discrepancy is not trivial for it leads to unstable 
behavior if not remedied. Our solution to this problem, taken from Day (1977), leads 
directly to a numerical criterion for arresting slip at a node. The resulting stopping 
criterion is equivalent to the physical requirement that slip ceases at a node 
whenever the magnitude of the frictional force vector on the node exceeds the 
combined inertial and restoring force vector. 

We assume that a fault surface E(t) with unit normal ri(~, t) is specified as a 
function of time. To simplify the subsequent discussion, we restrict Z to lie in the 
plane x3 - 0, thus ri(~, t) = ~3. A tangential discontinuity in slip s(~, t) with ~ on E is 
permitted across E. Continuity of the normal displacement and continuity of the 
traction across E are required. We also assume that the fault slip is asymmetric and 
equal twice the displacement, s(~, t) = 2 u(~, t). E is assigned a tangential traction 
T due to sliding friction. 

• f(~, t) = --SF~(~, t) (A1) 

where ~ is the unit vector of the slip velocity and SF is the product of a sliding 
friction coefficient (assumed constant and the normal component of traction). We 
constrain SF to be positive. Thus equation (A1) incorporates the physical motion 
that friction always opposes the slip velocity. 

Let Ui represent the nodal velocity component in the 2i direction at a particular 
grid point on E. In the following, let t equal to mAt where At is the numerical time 

s tepandmisanin teger .  A b b r e v i a t e ~ t + ~  t) a n d ~ t - ~ ) b y / J ( + )  and U(-) ,  

respectively. Our explicit time stepping scheme leads to the following expression for 
At 

the tangential components at t + ~-; 

0~(+) -- U~(-) - AtM-~[R~(t) - Qi(t) - T/(t)] (A2) 

for i = 1, 2. Ri(t), Qi(t), and M are derived from the finite element quadrature 
(Frazier and Petersen, 1974). Ri represents the ith component of the nodal restoring 
force resulting from stresses within the medium; Qi represents the ith component of 
the nodal damping force resulting from artificial viscosity; M is the mass associated 
with the node by virtue of diagonalization of the mass matrix. Ti f is the ith 
component of the nodal frictional force and is determined by use of equation (A1). 

The difficulty in constructing Ti f(t) to represent (A1) correctly is that the frictional 
force at time t depends on the direction of slip velocity at time t. Unfortunately, the 
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At 
time stepping scheme yields nodal velocities at times t _+ n-~-. Simply using the 

At 
direction of the slip velocity at t - -~- to determine Ti f at time t leads to unstable 

behavior. 
A successful solution for T / ( t )  is constructed by using the average value of the 

At At 
slip velocity direction cosines at t - -~ and t + -~-, 

Tif(t) = - ½ A S F [ 7 i ( + )  + yi(-)] (A3) 

i = 1, 2. Yi(+) and ~/i(--) a r e  the direction cosines of the slip velocity vector at t + 
At At 
-{- and t - -~-, respectively, and A is a positive constant with units of length squared 

which arises from the finite element quadrature. Substituting (A3) into (A2) gives 
a pair of nonlinear, coupled equations for the unknown velocity components UI(+) 
and /22(+) 

01(+) 
/)1(+) = C1 - B [/)12(+) + /223(+)]1/3 (A4) 

/23(+) -- C2 - B /22(+) (A5) 
[07(+) + t)~2(+)] 1/~ 

h t  
where we have grouped all quantities that are known at times t and t - - ~  into 

constants C1, C2, and B given by 

C1 = 0 1 ( - )  - A tM-I [RI ( t )  - Q~(t) + ½ASFyI(--)] 

C2 = /)2{-) - htM- l [R2( t )  -- Q2(t) + ½ASFy2(-)] 

B = ½AtM-1ASF. 

(A6) 

(h7) 

(A8) 

The system is solved by making the substitution/21(+) = rcos O and /)2(+) - rsin 
O which produces 

/ ) 1 (+ )  = C1 - B s g n  [ / 2 1 ( + ) ] / ( 1  + C22/C12) 1/2 

/22(+) = C2 - B sgn [/)2(+)]/(1 + C12/C22) 1/2 

(A9) 

(A10) 

where sgn [x] is +1 for x > 0 and -1  for x < 0. Equations (A8) and (A9) provide a 
stable numerical scheme for updating the nodal velocities on the slip surface. 

Since B is necessarily positive, there exists a condition on the constants B, C1, and 
C2 such that  a solution exists to the systems (A7) and (A8). The condition for the 
solution to exist is that  

(C12 + C22) 1/2 > B.  (All) 

This condition insures a consistency in sign between the left-hand side of (A9) and 
(A10) and the sgn function on the right-hand side. The condition (All) allows the 
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slip velocity ~ ( + )  to exist, hence the converse 

(C12 + C22) 1/2 < B (A12) 

becomes the stopping criterion. If (A12) holds, a nonzero slip velocity is inadmissible 
as a solution to (A9) and (A10). Multiplying (A12) by M / A t  and noting the definitions 
(A6), (A7), and (A8), we arrive at the physical interpretation: sliding ceases at a 
node when the magnitude of the frictional force would otherwise exceed the 
combined inertial and restoring forces. 
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