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Abstract. In this paper we present a method for ana- 
lyzing seismic signals recorded at an array of seismome- 
ters. The method is based on the multiple signal charac- 
terization (MUSIC) method. Four important features 
of this approach are: (1) it has the ability to resolve 
multiple closely spaced sources, (2) it works with both 
stationary, and nonstationary signals, (3) it is most sen- 
sitive to the strongest sources, and (4) it provides a 
geometric interpretation of the solution to the direc- 
tion finding problem. We have developed a numerical 
algorithm that extends the MUSIC method to nonsta- 
tionary and correlated signals. We present results us- 
ing this algorithm to measure directions of arrival and 
amplitudes of multiple plane waves in a homogeneous 
medium. 

Introduction 

Seismic arrays have proved useful in a variety of 
problems, for example, discrimination between nuclear 
explosions and earthquakes [e.g., Ringdal and Husebye, 
1982], determination of earth structure from crust to 
core [Capon, 1974, Filson, 1975, Aki et al., 1976], de- 
termination of the strike and dip of the Moho [Haskov 
and Kanasewich, 1978], measurements of near source 
ground accelerations [McLaughin et al., 1983], and ob- 
servations of earthquake rupture propagation [Spudich 
and Cranswick, 1984, Abrahamson, 1985]. The pioneer- 
ing work of Capon [1967, 1969] has served as the basis 
for most of the analysis of seismic data collected us- 
ing specialized arrays, excepting techniques developed 
for seismic reflection. Although Capoh's [1969] high 
resolution maximum likelihood technique has been suc- 
cessfully applied in certain cases, developments in array 
signal processing in fields outside of seismology during 
the past decade have produced several techniques [see 
Kay and Marple, 1981, or Haykin, 1985, for reviews] 
with resolving power superior to Capon's high reso- 
lution method. In particular, Schmidt's [1981, 1986] 
multiple signal characterization (MUSIC) method has 
features, described below, that make it extremely well 
suited for array analysis of seismic data. 

We have started to develop a numerical algorithm 
based on MUSIC specifically for array analysis of seis- 
mic signals. In preliminary tests of the method we have 
been able to demonstrate its superior resolution over 
Capoh's method. Capoh's method and other modifica- 
tions assume that the observed time series is station- 

ary, and its constituent signals are uncorrelated. While 
these assumptions may apply to certain parts of a seis- 
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mogram, e.g., the coda, they certainly do not apply to 
transient signals, e.g., body waves, or to signals that 
arrive simultaneously from different directions (multi- 
pathing). We have adapted MUSIC to measure both 
nonstationary and stationary signals. 

Theory and Method 

In the following we illustrate Schmidt's [1981,1986] 
signal subspace approach using a special case of plane 
waves propagating in a homogeneous medium. For sim- 
plicity in the following discussion we consider a single 
component of motion although MUSIC allows for mul- 
tiple components. 

Suppose that a set of q(< N) plane waves with an- 
gular frequency •v are incident on an array of N sensors 
in a homogeneous medium . The narrowband signal 
received at station •i at time t is given by 

q 

•(•'i,t) = 2 Amei{•:'"'œi-•t+4'"{t)) Jr ,(œi,t), (1) 
m----1 

where ,(•i,t) is the noise, gm is the wavevector of the 
ruth signal, and •m(t) is the phase of the ruth signal. A 
stationary signal exists when •m(t) is a random func- 
tion of time. A correlated stationary signal exists when 
any •i(t) and •b•.(t) are random but correlated with each 
other. A nonstationary signal exists when •m(t) is not 
a random function of time. In the following we assume 
that the noise •/(5i, t) is random and uncorrelated with 
the signal. The covariance of the signal received at sta- 
tions i and j is defined as 

R O. - (2) 

where <)t means time average, and • indicates Hermi- 
tian conjugate. R/y is a measure of the correlation be- 
tween signals received at 5i and signals received at 
When the q signals are stationary, the elements of the 
covariance matrix are 

q 

Rij = • IArn]2e i•""{•-•) + a2•ij, (3) 
m=l 

where •r 2 is the noise intensity. Thus, the observed co- 
variances are a linear superposition of individual signal 
covariances plus some measure of noise. Defining the 
observed signal vector as 

•(t) = [•(•1, t), •(52,t),..., •b(SN,t)] T, (4) 
where T means transpose, the covariance matrix is 

= © 
where © indicates the outer product of two vectors. The 
signal vector can be written as 

13 
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Fig. 1. Minimum angular resolution between two sig- 
nals rs. signal to noise amplitude ratio (SNR). For two 
stationary signals MUSIC's results are shown as A's 
and Capon's by E!'s. For nonstationary signals MU- 
SIC's results are shown as ̧ 's. For stationary signals 

1 the angular resolution of MUSIC is approximately 2• 
times better than Capon's resolution. For nonstation- 
ary signals MUSIC's resolution is decreased by a factor 
of approximately 3« from the stationary case. 
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q 
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where the directional dependence is contained in the 
signal direction vectors 

The covariance matrix can then be written as 
q 

m:l 

or 

where 

R = USU • + a2I, 
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and I is the identity matrix. In this approach we find 
the q signal direction vectors ff(/•m) and then invert for 
their associated intensities IAml 2. 

When q, less than N, plane waves propagate across 
an N station array, the covariance matrix of the signals 
USU• has rank q and is nonnegative definite. In this 
case it is easy to show that the minimum eigenvalue of 

R is a2 with multiplicity N- q. From this it follows 
that the number of signals can be determined from the 
number of large eigenvalues, i.e. those greater than •2. 
It also follows that the N-q eigenvectors of R, e-•, 
associated with the minimum eigenvalue are orthogonal 
to the q spatial signal vectors •(/•m), i.e., 

e-•.•Y(/•j) =0; i=q+l,...,N, j=l,...,q. (9) 

Define Es as the N x q matrix whose columns are the q 
eigenvectors of R associated with the q large eigenval- 
ues, As the q x q diagonal matrix whose diagonal ele- 
ments are the large eigenvalues of R, En the N x N- q 
matrix whose columns are the eigenvectors of R asso- 
ciated with the N-q small eigenvalues, and An the 
N-q x N-q diagonal matrix whose diagonal elements 
are the minimum eigenvalues of R. The covariance ma- 
trix can be written in terms of its eigenstructure as 

R = EsA.E• + EnAnE•n, (10) 

where E.A.E• represents the signals contribution to 
the covariances and EnAnE•n represents the noise. The 
essence of the MUSIC method is to find the q signals 
which give a best fit to the signal covariances. 

With this in mind, define the array manifold as the 
set of vectors •(•;) which correspond to the spatial de- 
pendence of plane wave vectors 

•(•) = [e i•:'œ', e i•:'œ2, ..., ei•:'œ'v], (11) 

where/• can have any value consistent with I•:[ = 
where/• is the medium velocity. In general, the set of 
array manifold vectors can be computed for any given 
array configuration provided that the medium's velocity 
structure is known. It is also possible to determine 
empirically. 
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Fig. 2. Comparison of power spectra of five stationary 
signals at 0 ø, +10 ø, and +20 ø with SNR = 10.0. Ver- 
tical lines are the MUSIC power estimates; the smooth 
curve is the power estimated by Capon's method. A's 
correspond to input signals. 
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Comparison of power spectra for three non- 
stationary signals and one stationary signal. Open D's 
correspond to input nonstationary signals; /•'s input 
stationary signals. MUSIC acurately locates all four 
signals. Capon's method accurately locates only the 
stationary signal. 

To determine the signal direction vectors •(•;m), we 
search for array manifold vectors •(•;) which have min- 
imum projection in the noise subspace. We do this by 
finding peaks in the directional function 

= z (z2) 
n-I 2' 

While equivalent to finding an array manifold vector 
that lies almost entirely in the signal subspace, finding 
the minimum projection onto the noise subspace leads 
to a more precise measurement of the incident signal's 
direction of arrival. 

To find the q signal amplitudes equate USU• with 
the signal eigenvector covariances 

USU i = E.A.E. f. (13) 
Approximating the q signal direction vectors, •(•;m), by 
the q array manifold vectors, •(•;), which have minimum 
projection in the noise subspace and inverting for S we 
have 

where 

• = [AtA]-ZAtE.AsE•A[AtA] -z, (14) 

... ... ß 

The diagonal elements of • are estimates of the signal 
intensities. 

The method described thus far was developed under 
the assumption that the signals are stationary. When 
nonstationary signals are incident, the covarianc• can 
no longer •e written • in Eq. (3). Instead the covari- 
ances •e 

<•=z •=z A,,A,•ei(g,,.•-g,,.•+•,,(•)-•,,(•)))•. 
rn•n 

The first two terms are the same as the stationary co- 
variances of Eq. (3). The last term arises from the in- 
terference of the q nonstationary signals. If the MUSIC 
method were applied directly to these covariances, the 
number of eigenvalues greater than Ami n would be less 
than the actual number of signals, and thus we could 
not find the signal direction vectors 

We modified MUSIC to avoid this problem by re- 
ducing the contribution of the nonstationary terms in 
the covariances by averaging the covariances over sub- 
arrays. We choose the size of the subarray by combin- 
ing an information theoretic criteria [Wax and Kalaith, 
1985] to estimate the number of signals, with a spa- 
tial averaging technique [Shan et al., 1985] to average 
over subarrays. The size of the subarray is increased 
incrementally, from a single station, until the number 
of large eigenvalues of the averaged covariance matrix 
stops increasing, or until the number of large eigenval- 
ues is equal to Naog- 1, where Na, is the dimension of 
the averaged covariances. Once the appropriate size of 
the subarrays has been determined, MUSIC is used as 
before to find the signal direction vectors •(•;) and the 
signal ir•tens•ties matrix •. In this case the diagonal 
elements of S are signal intensities and the off diagonal 
elements are a measure of signal correlation. 

Experiments and Results 

In this section we describe a series of experiments 
that illustrate the capabilities of our algorithm and 
compare them with Capon's [1969] high resolution 
method. In each experiment we have used a seven- 
component linear array with equal spacing in a homo- 
geneous medium. The covariance matrix was calculated 
from synthetic time series which were generated as a lin- 
ear superposition of stationary and nonstationary plane 
waves in a background of white noise. 

In the first set of experiments we input a single sig- 
nal in a background of white noise. For both MUSIC 
and Capon's high resolution method we found that the 
minimum resolvable signal to noise amplitude ratio was 
approximately 0.3 (• -10dB) independent of angle of 
arrival or signal correlation. The second set of exper- 
iments compared the capabilities of both methods to 
resolve two, closely-spaced signals. We looked at pairs 
of either stationary or nonstationary signals in white 
noise. In Figure 1 we plot the minimum resolvable an- 
gular separation versus signal to noise ratio for MUSIC 
and Capon's method. For stationary signals MUSIC 
has approximately two and one half times greater reso- 
lution than Capon's method. When nonstationary sig- 
nals are incident, MUSIC's resolution is degraded be- 
cause the necessary spatial averaging decreases the ef- 
fective number of sensors N. However, Capon's method 
cannot resolve nonstationary signals. 

In another set of experiments we compared the ca- 
pabilities of these methods to resolve a large number 
of signals. In Figure 2 we compare the power spec- 
tra of these methods when five stationary signals with 
closely spaced directions of arrival and varying ampli- 
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tude are incident. MUSIC accurately located all five sig- 
nals. Capoh's method was unable to resolve the closely 
spaced signals but did give a rough estimate of the peak 
power. An example with four signals three of which are 
nonstationary is shown in Figure 3. MUSIC resolves all 
four signals; Capoh's method resolves only the station- 
ary signal. 

Summary 

We have presented the MUSIC method as a means 
for analyzing seismic signals recorded at an array of 
seismometers. The numerical algorithm that imple- 
ments MUSIC was used to measure directions of arrival 

and amplitudes of multiple stationary and nonstation- 
ary plane waves in a homogeneous medium. In compar- 
isons with Capoh's high resolution maximum likelihood 
method we found that both methods had similar res- 

olution capabilities when a single signal was present. 
However, when multiple signals were present, some of 
which were nonstationary, MUSIC had much higher res- 
olution. Further, when the number of signals was larger 
than the number of sensors, MUSIC was most sensitive 
to the strongest signals. Of particular importance is the 
adaptation of MUSIC to deal with nonstationary signals 
which Capoh's method cannot resolve. In principle MU- 
SIC can be used to study nonplanar, broadband, polar- 
ized signals propagating in an inhomogeneous medium. 
Development of numerical algorithms dealing with these 
conditions is in progress. 
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