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I. Introduction

The term “forward modeling” of earthquake ground motions refers to
the calculation of the ground motions that would result from a given
earthquake occurring in a specified geologic environment. Such forward
modeling can be used to predict ground motions for engineering design
purposes and to determine earthquake source parameters by iterative
modeling of observed ground motions. In this chapter we examine how
ground motions can be calculated at locations near to large earthquakes, in
which case the source cannot be approximated as a point in space or time.
We will also show how these forward modeling techniques allow one to
determine the evolution of slip on a fault in a manner consistent with
observed ground-motion data. Our emphasis will be upon calculation
techniques that have been used in geologic structures that vary in at least
one dimension. Consequently, we will not dwell on examples of forward
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modeling of ground motions in uniform whole space or half-space velocity
structures, except when they illustrate a principle applicable to more
general velocity structures. We will concentrate on methods that are more
rapid computationally than finite-element or finite-difference solutions to
the problem. In addition we will emphasize techniques that model earth-
quakes as slip on fault surfaces, although volume sources will also be
considered. We will present derivations of many of the relevant equations,
although these derivations are intended only as tutorial sketches in which
the most important concepts are emphasized and the details suppressed.

A. CLASSIFICATION OF METHODS

For the purpose of later discussion, it will be helpful to classify some of
the methods used to calculate ground motions caused by extended seismic
sources. The main classification attribute will be whether point-source
Green’s functions are used and how they are used. Aside from illustrating
the concepts behind the methods, this classification can be significant from
a computational standpoint, depending upon the relative computational
effort required to specify a source model and to propagate the resulting
waves through the surrounding medium. Methods that use Green’s func-
tions that have been explicitly calculated will be called explicit Green’s
function integration methods. Methods called implicit Green’s function
integration methods will be those in which the Green’s functions appear in
the mathematics but are never actually calculated. Methods that do not use
Green’s functions at all will be called non-Green’s function methods. The
main difference between these methods is that for non-Green’s function
methods the action of the extended seismic source is inextricably linked to
the propagation of the resulting waves to the observer. Every time the
ground motions from a new extended source are desired, the entire calcula-
tion must be repeated. Examples of such work are the finite-element
modeling of Archuleta and Frazier (1978) and the discrete wave number
technique of Bouchon (1979). Explicit Green’s function integration methods
lie at the opposite end of the spectrum. In them, the wave propagation
problem is solved once for a set of point sources, and these Green’s
functions are reused for every new extended source model. In implicit
Green’s function integration methods, the Green’s functions appear in the
mathematics, but there is no need ever to calculate them explicitly because
of their simplicity.

B. SEIsMIC REPRESENTATION THEOREMS

A representation theorem is a mathematical statement that relates an
observable quantity, such as ground motion, to the parameters of an
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idealized model of a seismic source. The most commonly studied seismic
sources are tectonic earthquakes, volcanic earthquakes, and explosions.
Often earthquakes are idealized as dislocations on planar fault surfaces, and
explosions are idealized as centers of compression, but these idealizations
are simplifications of the actual situation. Explosions can result in the
creation of permanent cavities and can be accompanied by nonlinear
material behavior and shear deformation resulting from the relaxation of
local tectonic stress. Earthquakes are similarly complex upon detailed
examination of the source region. From mapping of surface rupture,
geologic investigation of exhumed fault zones (Sibson, 1986), and exposures
of source zones in mines (Gay and Ortlepp, 1974), we know that earth-
quakes can have regions in which the local rock deforms inelastically during
the earthquake (White, 1973). They may have local volume changes (Gilbert
and Dziewonski, 1975) possibly due to phase transitions or thermal expan-
sion. The source zone generally has many internal surfaces across which slip
occurs (Tchalenko and Ambraseys, 1970). These surfaces may or may not
intersect- each other. They may display roughness (i.e., deviation from a
plane surface) on all spatial dimensions (Tchalenko, 1970; King, 1983).
Dislocation on these surfaces may occur as cavitation and injection of fluids
such as water vapor or magma (Julian, 1983). Frictional melting may take
place on these surfaces during the earthquake (Sibson, 1980).

1. Volume Sources

Because actual earthquake and explosion sources show complexities that
may not be properly represented by the simple idealizations mentioned
earlier, we will start by discussing representation theorems valid for seismic
sources occupying a volume. Such representations have already been used
to calculate ground motions from an explosion (see, €.g., Bache et al., 1982)
but have not yet been applied to earthquakes.

Volume sources can be dealt with in two ways. The first of these uses the
concepts of stress-free strain (Robinson, 1951) or stress glut (Backus and
Mulcahy, 1976a). Backus and Mulcahy give a representation theorem valid
for a source distributed in a volume V. The kth component of displacement
at observation position y and time ¢ is

u(y,t) = /_woo dt’fffyl‘pq(x, t') 0, Giply, t —1;x,0)aV, (1)

where x is a location within V, T is the stress glut characterizing the seismic
source, and G, ,(y, f — t’;x,0) is the kth component of displacement at
position y and time ¢ — ¢’ caused by an instantaneous force of unit impulse
applied in the p direction at position x and time ¢ = 0 (i.e., the usual
point-force Green’s function), where the summation convention applies
over repeated indices and where qu = d/dx,. The stress glut is related to
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the stress-free strain tensor ef by
I'=C:ef, (2)

where C is the tensor of elastic constants.

To see how this representation could be used with a complicated source
model, consider an initially quiescent “reference” earth model having
known material properties and state of stress everywhere. For simplicity let
us also assume that the stress—strain relation in our reference model is given
by simple time-independent linear elasticity and that there is zero prestress.
The Green’s functions and elastic tensor in Egs. (1) and (2) are those
appropriate for the reference earth model. We characterize our source
model by specifying the strain and stress fields e(x, t) and o(x, ) every-
where within the source volume V. Note that e cannot equal C: o; if it did,
linear elasticity would prevail everywhere within the source volume, and no
waves at all would be generated. Seismic waves are generated where the true
stresses o in our source model differ from the stresses C: e that would be
expected in our reference earth model. This difference is the stress glut:

[(x,t) =0o(x,1) — C(x):e(x,1). 3)

Because linear elasticity is usually assumed to prevail in the reference earth
model, the region where stress glut is nonzero is identical to the region in
which inelastic deformation occurs. Hence, regions where inelastic deforma-
tion occurs can be regarded as sources of seismic waves.

An arbitrarily complicated seismic source can be described by specifying
its associated stress and strain fields o(x, ¢) and e(x, ¢). For realistic seismic
sources specification of ¢ and e can be quite difficult, since the action of a
seismic source is governed by numerous laws of physics whose solution can
be a formidable mathematical or computational problem. We shall use the
term “dynamic” source models to refer to those models in which the
appropriate laws of physics have been solved to obtain physically self-con-
sistent ¢ and e. Models in which o and e are chosen that do not satisfy the
appropriate physical laws will be called “kinematic” models, since the
motion of the source is specified. From a historical standpoint, the distinc-
tion between kinematic and dynamic sources is not very important for
volume earthquake sources, because almost no kinematic volume sources
have been used for earthquakes thus far. This distinction is much more
important for surface sources, such as slip on infinitesimally thin fault
surfaces.

A second representation theorem has been used by Bache e al. (1982)
for a volume source. In their method the source is replaced by the
displacements and tractions it causes on an arbitrary surface 2 enclosing
the source (Fig. 1). These displacements and tractions can be calculated on
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zone of inelastic deformation

F1G. 1. Surface X separates the regions of purely elastic behavior ¥, from a volume V;
containing all inelastic behavior; V; can also contain elastic regions, and the exact position of
the surface £ is chosen for computational convenience. The action of the source is represented
by the displacements and tractions it causes on 2.

2 for an arbitrarily complicated source by a finite-element or finite-
difference method. Let us denote these displacements and tractions by
u,(x,t) and T,(x, t). We use the material properties in V, to define our
reference earth model [see Bache er al. (1982) for details regarding the
selection of a reference earth model], and we denote the Green’s functions
appropriate for this model by the vector G/, where the ith component of G/
is G,;, as in Eq. (1), and j is the point-force direction. G/ causes tractions
T/ across a surface with normal fi. We then have the representation

w0 == [ a6 y.0) Tx e~ 1) ~u,x 1)

*T/(x,t—t';y,0)dZ 4)

for the geometry shown in Fig. 1. Both Egs. (1) and (4) can be used for
forward modeling of volume sources. If a finite-element or finite-difference
method must be used to determine stress glut T, in Eq. (1), then Eq. (4) is
probably a more simple representation to use. This is because Eq. (4)
involves a surface integral rather than a volume integral. However, Eq. (1)
is preferable for doing the inverse problem because its kernel contains the
source term we would like to resolve.

2. Surface Sources

Beginning with Aki’s (1968) analysis of the 1966 Parkfield, California,
earthquake, almost all modeling of earthquake sources and ground motions
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at local distances (R < 200 km) has made the rather restrictive assumptions
that earthquakes occur as slip on a small number of infinitely thin, usually
planar, fault surfaces, and that the slip direction is locally tangent to the
fault surface. This model of earthquakes is mathematically and computa-
tionally much more convenient than a volume source model and has been
adequate for obtaining a first-order understanding of the earthquake rup-
ture process. It has been successfully used for waveform modeling of
earthquake-generated ground motions at periods down to about 1 of the
faulting duration, which is approximately the length of the fault divided by
the shear wave speed. In this chapter, we will concentrate on earthquake
source models that make the surface source approximation, although we
point out that the understanding of more realistic volume sources is a
highly desirable and largely unpursued goal.

Neglecting the effects of self-gravitation and prestress, Backus and
Mulcahy (1976b) show that the stress glut associated with a displacement
discontinuity s on surface £ is

I, = Cijklnksl’ (5)

i

where f1 is a unit vector normal to X pointing into the positive side of X,
and the displacement discontinuity s is the difference in displacement
between the positive and negative sides of the fault,

s(x,t) =u(x*, 1) —u(x", 1), (6)

where x is a point on surface 2. Equation (5) is valid for displacement
discontinuities both parallel and perpendicular to the fault. Inserting Eq.
(5) into Eq. (1) gives the most commonly used representation

u,(y,t) = /jo dt’/LCijk,nks, 8ijm,(y, t—1t;%x,0)dZ, (7N

which was presented by Maruyama (1963), Burridge and Knopoff (1964),
and Haskell (1964). By using the reciprocity relation for Green’s functions

Gij(y’ t’x,o) = Gji(x’ t’yao)’ (8)
Eq. (7) may be rewritten

un(y. ) = [ e [[ Cpumisid Gunlx 1 = 13,00 dZ. (9)

The form of Eq. (7) is more intuitively satisfying than that of Eq. (9)
because the Green’s functions in Eq. (7) are those describing wave propa-
gation from a point force applied on the fault surface to the observer
location, whereas in Eq. (9) the point forces are applied at the observer
location and the Green’s functions are evaluated on the fault. However, Eq.
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(9) is slightly more general than Eq. (7); Burridge and Knopoff (1964)
derive Eq. (9) first and then obtain Eq. (7) by making an assumption of
homogeneous boundary conditions. Moreover, Eq. (9) can be computa-
tionally more convenient than Eq. (7) depending upon the number of
observation locations and the method for calculating Green’s functions. For
example, if a finite-element (FE) or finite-difference (FD) method is used to
calculate Green’s functions for a laterally heterogeneous seismic velocity
structure, three Green’s functions calculations must be performed for each
observer location (one for each component m of ground motion), whereas
straightforward application of Eq. (7) would require three separate calcula-
tions for each point on 2. For a laterally homogeneous velocity structure,
Archuleta and Day (1980) show that use of Eq. (9) necessitates only two FE
or FD calculations, regardless of the number of observers, due to the
invariance of the Green’s function under horizontal translation and to the
cylindrical symmetry of the geometry. Spudich and Frazer (1984) point out
that use of Eq. (9) is advantageous when using ray theory Green’s func-
tions, since the required ray tracing can be accomplished by simple shoot-
ing from the observer to the fault rather than by the two-point ray tracing
needed to shoot from a point on the fault to each observation point.
However, Eq. (9) offers no computational advantages over Eq. (7) if the
desired number of observation locations is very large or if the so-called
spectral methods (Chapman, 1978) are used to calculate Green’s functions,
because in these methods equal computation time is needed for the case of
a single source depth and multiple receiver depths and vice versa. We note
that Eq. (8) may also be applied to our volume source representations Eqgs.
(1) and (4).

Before proceeding, it is worthwhile to clarify some terminology. The
terms “source” and “receiver”’ are ambiguous when applied to Eq. (9)
because of the use of Green’s function reciprocity. We will always use the
term “observer location” or something similar to refer to point y in Eq. (9),
which is the place where ground motions caused by the extended seismic
source are to be evaluated. We will only use the term “receiver” to
correspond to the first argument of either Green’s function in Eq. (8).
Hence, y is the receiver in Eq. (7) and x is the receiver in Eq. (9). The term
“source” will refer to the location of the point force or point-moment
tensor when discussing Green’s functions and will otherwise denote the
region of nonzero stress glut.

In order to simplify Eq. (9) further, we note that the stress tensor o
associated with the Green’s function in Eq. (9) is

o,(r}n(x’ t; y,O) = Cijk[(x) aijim(X, t; y,O), (10)

where m is the point-force direction. Hence the associated traction T™
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exerted across the fault surface with normal f is
T™(x,t,y,0) =t * of (11)
and Eq. (9) may be written (Spudich, 1980) as

[+
u (y, t) = dr' || s(x,¢’) - T™(x,t—t';y,0)dZ. 12
n(r 1) = [ ar [[s06 1) - 17 y,0) (12)
If we denote the Fourier transform of f(¢) by
oo ,
f(@) = [ f(e)e ™ ar, (13)

then the frequency domain version of Eq. (12) is

u,(y,w) = fj;s(x, w)* T"(x, w;y,0) d=. (14)

Although Eq. (14) is perfectly valid, the slip functions of greatest seismo-
logical interest have static offsets, and consequently their Fourier trans-
forms are undefined. If we denote temporal derivations with an overdot,
then slip velocity is §, and Eq. (14) may be written in a form more
advantageous for numerical evaluation as

in(y. @) = [[300) - T"(x 0;7,0) 4, (15)

where #,, is the m component of ground velocity. The ground velocity time
series may be obtained by inverse Fourier transformation of #(w). We have
found it computationally most stable to obtain acceleration ii(¢) by inverse
Fourier transformation of iwi(w), and displacement u(z) by temporal
integration of i(¢), thus avoiding difficulties with the w = 0 term. Although
in later sections we will often refer to the slip function itself, it should be
understood that, in practice, the slip rate function is used for computing
ground motion when the method of calculation involves the frequency
domain.

II. The Fault Surface Integral

At present there is no clearly preferred method for calculating ground
motions in the near-source region of an earthquake. A variety of methods
have been used. Each has its own range of validity, and almost all are
computationally expensive. In this section we will review a number of the
methods, explain the basic physics behind them, and point out their
strengths and weaknesses.
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From Section 1.B, the basic integral to be evaluated is
ww)= | s-TdZ. 16
(@ = f[, (16)

Calculation of near-source ground motions is generally difficult because for
geologically realistic situations both terms in the integrand are computa-
tionally expensive to obtain. For example, the slip-rate vector § may be
obtained for a fault having heterogeneous strength and stress drop by
three-dimensional FD, FE, or boundary-integral calculations, as discussed
by Mikumo in Chapter 3 of this volume. The formidable problem of wave
propagation in laterally heterogeneous media must be solved to obtain the
traction Green’s functions. If the surface integral in Eq. (16) is performed
numerically and equal accuracy is desired for each frequency, the computa-
tional effort needed is proportional to the square of the frequency and to
the cube of the frequency bandwidth desired in the caleulated ground
motions (we will elaborate on this statement later). Consequently, a number
of approximations are often made to obtain § and T. In many cases, the
particular approximations made to $ and T can interact to simplify the
surface integral calculation. In the following sections, we will discuss some
of these approximations.

A. SLIP RATE VECTOR §(X, t) FOR KINEMATIC MODELS

In many ways specification of the slip rate vector is the central element
of a kinematic faulting model. The slip rate vector represents one’s under-
standing of the behavior of the earthquake rupture. Based on waveform
matching of synthetic ground motion and real ground motion (see,
e.g., Archuleta and Day, 1980; Olson and Apsel, 1982; Hartzell and
Helmberger, 1982; Hartzell and Heaton, 1983, 1986; Archuleta, 1984), the
behavior of the earthquake source is relatively well modeled for frequencies
up to 1-2 Hz. Above these frequencies the source is not well understood
deterministically, and normally a statistical approach is taken (Haskell,
1966; Aki, 1967; Boore and Joyner, 1978; Andrews, 1981; Izutani, 1981;
Boatwright, 1982; Koyama, 1985). This lack of understanding of the
high-frequency behavior of an earthquake source is one of the major
obstacles to accurate prediction of ground motions above 1.0 Hz. In the
following we consider rupture models that have been successfully used at
frequencies < 1.0 Hz. We have chosen to discuss the slip rate vector rather
than the slip vector because its Fourier transform is well behaved, i.e., we
do not have to take into account the static offset inherent in the slip vector
itself (see Section 1.B). The slip rate vector has components only in the fault
plane for shear faulting. Thus, if one chooses the convenient basis vectors
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%, and X, in the directions along strike and downdip, respectively, the slip
rate vector will have strike-slip and dip-slip components §;, and s,, respec-
tively. Some of the parameters needed to describe the slip rate depend on
the function chosen for the slip rate. Other parameters, primarily the
rupture time, are directly associated with the slip rate but are not dependent
on the function itself.

The most common functional form for the slip rate, a rectangle function
II(z) (Bracewell, 1965, p. 52), is the Haskell (1964) model in which the slip
at a given x is a linear ramp with a rise time 7(x) (Fig. 2a). In order to allow
for a propagating rupture, different points on the fault will slip at different
times. Thus, each point on the fault has a rupture time ¢ (x) at which the
slip initiates. This parameter enters naturally into the slip rate function

$(x, 1) = [a,(0)%; + a, ()%, [TI{[1 - 1,(x)]/7(x)}, (17)

where a, and a, are components of the slip-rate vector. This description of
the slip rate depends on four basic parameters, a,(x, t), a,(x, t), 7(x), and
t.(x).

There are a number of variations of the Haskell model. For example,
Hartzell and Helmberger (1982) use a triangular slip rate function to
compute synthetics for the 1979 Imperial Valley, California, earthquake.
Because dynamic models of a propagating stress relaxation (Madariaga,
1976; Archuleta and Frazier, 1978; Day, 1982) show that the functional
form of the slip rate closely resembles the form derived by Kostrov (1964)
for a self-similar propagating stress drop, the Kostrov model (Fig. 2b) has
become a prominent alternative to the Haskell model. Archuleta and
Hartzell (1981), Boatwright (1981), and Campillo and Bouchon (1983) have

(a) Yoo

{--)

§(--)

Amplitude
Amplitude

Si-),
S(-),

tg(x) t(x)+T  Time te(x) Time

F1G. 2. Functional forms for slip and slip rate. (a) The Haskell slip function (solid line)
and the slip rate function (dashed line) are shown for source point at position x. The rupture
time function ¢(x) and the rise time 7(x) are shown. (b) The modified Kostrov slip and slip
rate functions are shown as the solid and dashed lines, respectively. The dotted line indicates
the shape of the Kostrov functions before modification.
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used a modified Kostrov function to generate high frequency synthetic
seismograms. Although the functional forms of the Haskell model and the
Kostrov model are quite different, the number of parameters needed to
specify each is the same. Although the computation is not reduced, one
could argue that the Kostrov dislocation better represents the physics of the
earthquake mechanism. If only low frequencies are being considered, the
two dislocation models are approximately the same because the singularity
in the Kostrov slip rate at the arrival time of the rupture is eliminated by
low passing the slip rate function (Archuleta and Hartzell, 1981). Both
models are kinematic in that the dislocation is specified without regard to
the forces acting in the process.

Given that the slip rate is specified with four parameters, a crucial
observation is that two of the parameters §; and §, are linearly related to
the ground motions, while 7 and ¢, are not (Archuleta, 1984). This feature
of the parameterization became the critical element in Archuleta’s attempt
to model the faulting of the 1979 Imperial Valley earthquake. He found
that variations in the rupture time ¢, had a pronounced effect on the
synthetic seismograms, whereas variations in the rise time 7 and the slip
rate amplitudes s, and s, cause either small or predictable changes. The
effect on the synthetics of changing the slip rate amplitude is strongly
governed by geometrical attenuation (= R™!, R™2, R™* for the far-, inter-
mediate-, and near-field terms, respectively, where R is the distance be-
tween the observer and the point on the fault). Thus, any change in the slip
rate amplitude affects most the synthetics at stations closest to where the
change in slip rate amplitude was made. This is not the case with the
rupture time or the rise time. However, as Anderson and Richards (1975)
showed, it takes a 300% change in rise time to compensate for a 17% change
in rupture time. In section I1.C.1 we show why rupture time variations have
such a strong effect, which has also been discussed by Spudich and
Oppenheimer (1986).

A primary effect is that when doing forward modeling of data, changing
the slip rate amplitudes while holding the rupture time fixed may produce a
better fit, i.e., one finds a local minimum of misfit in model space. Finding
the global minimum, or even recognizing it, given that two of the parame-
ters in the model are nonlinearly related to the data is a major unanswered
question in forward modeling. This problem has been avoided to some
extent in ground motion studies using linear inverse techniques by choosing
a parameterization of $(x, ¢) in which ¢,(x) does not appear explicitly.
Spudich (1980) represented § as an arbitrary continuous function of posi-
tion and time, in which case Eq. (15) is completely linear in §. Using
Spudich’s parameterization, however, does not necessarily lead to solutions
for § that show a conspicuous rupture front. To alleviate this problem,
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Olson and Apsel (1982) and Hartzell and Heaton (1983, 1986) used a
different, more restrictive parameterization of § that preserved the linearity
of the problem while constraining all the slip to occur within a time window
chosen a priori.

B. COMMENTS ON GREEN’S FUNCTIONS PERTAINING TO THE FAULT
SURFACE INTEGRAL

The calculation of Green’s functions in various types of earth models has
been a fundamental research area in seismology, and an enormous body of
literature deals with the subject. In this section, we will limit ourselves to
describing some of the methods that have been used for extended-source
calculation, and we will comment primarily on those aspects of the methods
that have a practical relevance in such calculations. These aspects are (1)
the accuracy for realistic earth models, (2) the computational effort required
by each, and (3) any structure in the mathematical expressions that facili-
tates the inclusion of an extended seismic source.

1. General Comment on Accuracy

For the modeling of observed earthquake seismograms, or for prediction
of ground motions in a specific region, the first factor limiting the accuracy
of any Green’s function calculation is simple ignorance of the earth
structure at the site. In order to calculate Green’s functions accurately at 5
Hz for a particular region, it is necessary to know the 3D shear-velocity
structure on a scale of a few hundred meters both horizontally and
vertically. Since such a detailed knowledge of the earth’s velocity structure
may not be available in the near future, calculations of ground motions for
real world situations are predestined to have errors. To our knowledge, no
one has yet attempted to estimate these errors and carry them along as
uncertainty estimates in subsequent calculations. Estimation of these errors
would be relatively easy if microearthquake recordings were available in the
study region. One could simply examine the spectrum of the difference
between the observed microearthquake seismograms and synthetic seismo-
grams calculated in the identical source—observer geometry for point dislo-
cations. For frequencies below the microearthquake’s corner frequency, the
synthetic point-dislocation seismograms should match the observed seismo-
grams. Probably it would be observed that the difference between the
observed and synthetic seismogram spectra would increase as a function of
frequency, corresponding to our progressively less accurate knowledge of
earth structure on decreasing length scales. If quantitative measurements of
these discrepancies were available, they could be used to estimate uncertain-
ties in both forward modeling and inverse modeling of earthquake seismo-
grams (Spudich, 1980).
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A related approach was used by Archuleta (1984) in modeling the 1979
Imperial Valley earthquake seismograms. The shear wave velocity structure
he used for calculating his Green’s functions had been altered by trial-and-
error modeling to improve the agreement between predicted ground mo-
tions and those observed for an aftershock of the 1979 event.

Another approach to the problem of inaccurate Green’s functions is to
use microearthquake seismograms as point dislocation Green’s functions
(Hartzell, 1978). Below the microearthquake corner frequency, these seis-
mograms are exactly the Green’s functions desired. A large amount of work
has been done recently using this promising technique (Kanamori, 1979;
Hartzell, 1982; Irikura, 1983; Imagawa et al., 1984; Munguia and Brune,
1984; Joyner and Boore, 1986), which will not be reviewed in this chapter.
The main impediments to the use of this idea are that at present there are
generally not enough microearthquake records available to simulate the
rupture of a large fault, and in many cases it is desired to calculate ground
motions at frequencies above the microearthquake corner frequencies, in
which case the question of earthquake scaling relations enters the picture.
We note that Hartzell (1978) used four aftershocks of the 1940 El Centro
earthquake to simulate the mainshock record, and the simulation worked
very well at periods of 5 sec and longer. This is quite a different style of
simulation than the high-frequency syntheses of Irikura (1983). A second
factor, related to the general question of accuracy of theoretical Green’s
functions, is an entirely subjective question, namely, what attributes of the
ground motion are important to calculate accurately? If the ground motion
calculation is being done to aid in the engineering design of a structure, it
may be that it is most important to calculate peak ground velocity accu-
rately, or perhaps the total duration of long-period ground motion, or the
root-mean-square acceleration. Considerations like these definitely affect
the choice of a Green’s function calculation method. For example, close to
a fault the peak ground velocities are generally caused by the direct S wave,
so that use of simple ray theory Green’s functions may be ideal for such
calculations (Spudich and Frazer, 1984). On the other hand, at larger
distances the duration of long-period motion is generally related to surface
wave excitation, and use of ray theory Green’s functions to predict the
duration of long-period motions at large distances would be an utter
disaster. In the remainder of this chapter, it is presumed that the limitations
of the various Green’s function methods are known.

2. Green’s Functions in 2D and 3D Media with Arbitrary
Velocity Structure

Currently, FE and FD methods are the only techniques available that
can be used to calculate complete Green’s functions, i.e., Green’s functions
containing all possible body and surface waves in general, laterally varying
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velocity structures. The chief limitation of such techniques is that the
computational effort required for 3D models is proportional to £ , where
fmax 18 the maximum frequency of interest in the calculation. The exponent
of 4 results from the necessity of using a number of mesh points per linear
distance that is proportional to frequency, and a time step that is inversely
proportional to frequency. In addition, the needed storage goes up as f.},..
Because of the large computational effort, FE and FD methods have not
been used (to our knowledge) for ground motion calculations in 3D,
laterally varying media. An additional characteristic of these methods is
that the Green’s functions they generate are specified as the motions of a
given set of mesh points, meaning that integrals of quantities like s + T must
be done purely numerically.

If only body waves are desired in laterally varying structures, consid-
erable work that is applicable to the extended source problem has been
done on asymptotic ray theory and related methods such as Gaussian
beams [see Cerveny and Klimes (1984), and other articles in the same issue].
The chief advantages of ray-based methods are their rapidity of calculation
(which is independent of frequency), their accuracy at high frequency
(except for the omitted waves, of course), and the simple form of the
Green’s functions, consisting primarily of propagating delta functions. As
Bernard and Madariaga (1984) and Spudich and Frazer (1984) have shown,
this simplicity in the Green’s functions greatly simplifies the fault surface
integral and facilitates their use with extended seismic sources.

Another Green’s function method that may have great potential for
handling topographic effects and scattering by basins is the use of ray
theory in conjunction with the Kirchhoff—-Helmholtz theory (Frazer and
Sen, 1985; Sen and Frazer, 1985). Such a method is excellent for the
reflection or transmission of body waves at irregular interfaces because it
includes diffractions. In addition, it could be very easily used with extended
sources by employing the isochrone integration approach of Bernard and
Madariaga (1984) and Spudich and Frazer (1984). Such an approach would
necessitate the use of isochrone integration on multiple surfaces of integra-
tion, as in Haddon and Buchen (1981), with one being the fault and the
others being the base of the basin, etc.

3. Laterally Homogeneous Media

Most ground motion calculations for extended seismic sources have been
performed in laterally homogeneous media because the theory for Green’s
functions has been most fully developed for such media, and because it is
computationally feasible to calculate complete synthetic seismograms for
such media on a routine basis. In this section, we will concentrate primarily
on methods for complete synthetic seismograms. In most places the earth’s
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material properties vary most strongly with depth, so that the assumption
of lateral homogeneity seems reasonable. However, no one, to our knowl-
edge, has ever examined quantitatively the degrees of misfit between real
observed point-source seismograms and theoretical Green’s functions
calculated for a laterally homogeneous approximation to the local velocity
structure.

The cylindrical symmetry and translational invariance of laterally homo-
geneous earth structures lead to simplifications of the mathematical expres-
sions for the Green’s functions. These simplifications have only partially
been exploited to ease the integration of s * T over the fault surface. Before
we can describe how the assumption of cylindrical symmetry interacts with
integration of the Green’s functions over the fault surface, it is necessary to
present some of the mathematics describing waves in laterally homogeneous
media. For simplicity and consistency of notation, we will refer primarily to
Kennett (1983), who elaborates on the mathematics and gives proper credit
to the original authors. The reader may also find Spudich and Ascher (1983)
helpful.

a. Arbitrary Variation of Velocity with Depth Using a 2D Finite-Element
Solution. While it is possible to use a 3D FE calculation to obtain Green’s
functions for a laterally homogeneous medium, Day (1977) has shown how
Green’s functions for the 3D geometry can be obtained from a less
expensive 2D FE calculation in depth and epicentral distance. The ad-
vantages of his technique, aside from the obvious reduction of a 3D to a 2D
calculation, are that Green’s functions are obtained on a dense grid of
points facilitating integration over a seismic source, and an arbitrary
variation of velocity with depth is allowed in the medium. The basic idea of
the method is that the displacements and stresses in an axisymmetric
medium can be expanded in a Fourier series over azimuthal angle ¢. For
example, displacement u can be expanded

u(r9z9¢9t) = ZU()‘, Zat’n)eimb’ (18)

and the stresses can be expanded similarly. For each azimuthal order n, the
expansion coefficient U can be obtained by a 2D FE calculation (see Day,
1977, for details). For a vertical point-force source, U # 0 only for the
n = 0 term, and for a horizontal point force U # 0 only for n = 1. Hence,
point-force Green’s functions can be obtained for receivers at every point in
a 3D axisymmetric medium by solution of two 2D FE calculations. Green’s
functions calculated in this manner were used by Archuleta and Day (1980)
to do forward modeling of the 1966 Parkfield, California, earthquake.

b. Arbitrary Variation of Velocity with Depth Using Other Methods. By
Fourier transformations of field quantities over azimuthal order, Day (1977)
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reduced a 3D problem to a series of 2D problems. By performing a Bessel
transform over epicentral distance, the problem can be reduced further to a
series of 1D problems. This is the most common approach to laterally
homogeneous problems. Its advantage for extended source calculations is
that the horizontal variation of Green’s functions can be expressed analyti-
cally instead of purely numerically.

In a cylindrical coordinate system (r, ¢, z), the Fourier transform of
displacement and z component of stress can be expanded as

u(r, ¢, 2, ) = fowk Y [UR, + VS] + WT}] dk, (19)

and
o.(r ¢, z,0) = [ k LIPR, + SS] + TT;) dk, (20)
0 n

where k is a horizontal wave number and 7 is an integer. The mutually
orthogonal vector surface harmonics R, Si, and T} are given by Kennett
[1983, Eq. (2.48)], and they are proportional to J,(kr)e™™® and its deriva-
tives, where J, is the Bessel function of order n. The expansion coefficients

U,V,..., T are functions of z, k, and « that are to be determined. The
continuity of u and o, with depth and the equations of motion yield the
coupled differential equations for the coefficients U, V..., T,
dbp=Apbp + Fp, (21)
and
db,=Aby + Fy, (22)
where
b,=[U,V,P,S], (23)
and
b, =[w,T]". (24)

Here, F,, and F,; are inhomogeneous source terms, the matrices A, and 4,
are given by Kennett (1983, p. 30), the T superscript indicates a transpose,
and d, = d/d,. The system Eq. (21) corresponds to P-SV motion, and Eq.
(22) corresponds to SH motion. We will refer to them as the P-SV and SH
systems, respectively. Note that they are ordinary differential equations in
one spatial dimension.

Because the elements of b are expansion coefficients for displacement
and the z component of stress, as in Eqgs. (19) and (20), b is often called the
displacement—stress vector; b(z) is a continuous function of depth, and the
propagator matrix P(z,, z;) can be used to relate b(z;) to b(z,):

b(z,) = P(z;, 21)b(z,) (25)
(Kennett, 1983, p. 40).




5. EARTHQUAKE GROUND-MOTION CALCULATION 221

Typically, for a choice of parameters w and k, the P-SV and SH systems
are solved subject to a free-surface boundary condition, a radiation condi-
tion at large depth, and a particular inhomogeneous source term F(z).
Although it is possible to represent an extended source through the term
F(z), this is not the approach usually taken, although it would be worth
investigating. Bouchon (1979) and Chouet (1987) include an extended
source in a related manner, which will be described in Section I1.C.4. The
usual approach is to assume existence of a point source at depth z_, which
gives rise to a forcing term of the form

F(z) =Fé8(z—z,) + F,d,8(z — z,). (26)

This source can be equivalently expressed as a discontinuity in b at depth
z;:

b(z}) — b(z]) = F, + wAF,. (27)

Kennett (1983, p. 95) gives expressions for the discontinuity in b caused by
a point moment-tensor source. An alternate approach is to set F(z) = 0 for
all z and solve the P-SV and SH systems with a given traction boundary
condition at z = 0 (Spudich and Ascher, 1983; Olson et al., 1984). This
procedure yields b at all depths for a surface source, and the spatial
reciprocity relation for Green’s functions can then be used to derive the
free-surface displacements caused by buried sources.

Thus far we have been working in the frequency domain. Expansion of
displacement and stress analogous to Egs. (19) and (20) can be written in
the time domain [see, e.g., Olson et al., 1984, Eq. (2.7)], and the time-
domain versions of Eqs. (19) and (20) are given by Alekseev and Mikhai-
lenko [1980, Egs. (16-18)] and Olson et al. [1984, Eqgs. (2.8a-2.8c)]. These
are partial differential equations in the (z, ) domain. Once Egs. (21) and
(22), or their time domain analogs, are solved for U, V, and W, the medium
displacements are obtained by evaluation of Eq. (19).

When used to calculate Green’s functions, the methods of Alekseev and
Mikhailenko (1980), Spudich and Ascher (1983), and Olson et al. (1984) are
in some ways well suited and in other ways poorly suited for extended
seismic source calculations. Each of the methods solves the P-SV and SH
systems on a dense grid of points in depth, which is very useful because the
traction vector T must be known over the entire source. On the other hand,
the computational effort they require rises very rapidly with frequency,
limiting their utility to frequencies of a few hertz or less.

If complete seismograms are desired in the frequency band (0, f_..),
then the computational effort C required by all these methods scales like

C=mnmenmn, (or mnn,) = fro,
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where n,, n;, and n, are the number of wave numbers, frequencies, and
time steps, respectively, for which the P-SV and SH systems are solved,
and n, is the number of mesh points needed in depth to solve each system.
Here, C is proportional to f2 , for the several reasons. The requirement of
complete seismograms implies the use of waves having all slownesses from
zero to some maximum slowness p, .. usually greater than the slowness of
the fundamental Rayleigh mode. Hence, the P-SV and SH equations must
be solved for a range of wave numbers running from 0 to k., = 27D . frax:
If the wave number sampling scheme is independent of frequency, as it is in
Alekseev and Mikhailenko (1980), Spudich and Ascher (1983), and Olson
et al. (1984), then the number of wave number sample points for which the
P-SV and SH equations must be solved grows linearly with frequency.
Similarly, the three papers mentioned above use a FD, collocation, and FE
method, respectively, to solve the P-SV and SH equations. In order to solve
these equations, each method requires a number of mesh points in depth
(and hence computational effort) that grows linearly with frequency. Fi-
nally, the number of time steps needed or the number of frequencies for
which the P-SV and SH solutions must be solved grows linearly with f_ ..

While a cylindrical coordinate system is the natural one for point seismic
sources in a laterally homogeneous medium, we shall see later that a
Cartesian coordinate system offers certain advantages when extended seismic
sources are considered. For that reason, let us consider how this same
physical problem can be handled in Cartesian coordinates.

We start by expanding the displacement and z component of stress in
terms of an orthogonal set of basis functions

[oo] o0
u(x, y, z, ©) =f f (UR + VS + WeT*) dk dk,, (28)

—o00¥ — 0

with an equation analogous to Eq. (20) for o,, where

R = V3, (292)
S = kIR 0.Y + k;'50.Y, (29b)
T =k;'%d,Y ~ k.;'§0,Y, (29¢)
Y(x, y) = exp(—ik, x — ik, y), (30)

where U<, V¢, and W¢ are functions of z, k,, k, and w. One possible route
to follow to obtain a solution for U<,..., T° would be to use the equations
of motion to obtain an equation analogous to Eq. (21) involving the new
expansion coefficients, i.e., let

bt = [Uc, Vc, WC, Pc’ Sc’ TC]T, (31)
b = A" + F. (32)
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FIG. 3. A plane wave with wave number k propagates in the x’ direction; k lies in the x—y

plane. The vector potential ¥ does not necessarily lie in the x-p plane; ¥ is the y’
component of ¥.

However, because the P-SV and SH motions do not separate in a Cartesian
coordinate system, A€ is a 6 X 6 matrix that does not partition into a 4 X 4
P-SV and a 2 X 2 SH system like Egs. (21) and (22). The 6 X 6 system [Eq.
(32)] would have to be solved for every (k,, k) pair.

This problem may be reduced to a problem in which P-SV and SH
separate by exploitation of the cylindrical symmetry. For every point
(k. k,) in the wave number plane, we choose a new coordinate system
(x’, y’, z) with x’ oriented along the direction of the wave number vector
k =k, X + k,§ (Fig. 3). If we then let k = |k|, and replace U, V, W, P, S,
and T in Eqs. (23) and (24) by iu,, u,., u,, io,,, o,,,, and o, ,, respectively,
we find that Egs. (21) and (22) hold in the rotated Cartesian system
(Kennett, 1983, p. 36). They are then solved for every (k,, k,) point
yielding radial, transverse, and vertical displacements, and these results are
rerotated back into the (x, y, z) system for subsequent use. This technique
has been used by Bouchon (1979) and Chouet (1982) for extended sources
in layered media.

¢. Weakly Inhomogeneous Layers. Thus far, we have restricted our
comments to methods of solving the P-SV and SH equations for arbitrary
variation of velocity with depth. To accommodate the generality of arbi-
trary variation, purely numerical methods (e.g., FE, FD, collocation) must
be used to solve the equations. If the restrictions on the velocity profile are
tightened to require piecewise-continuous functions with small velocity
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gradients d,a and d,B between discontinuities (a being the P-wave velocity
and B being the S-wave velocity), then two benefits accrue from the
standpoint of extended-source calculations. First, the variations of the
Green’s functions with depth [i.e., the terms U, V, W, etc., in Eq. (19)] can
be written in terms of analytic functions such as Airy functions. Second, the
computation times scale like f2,, rather than f7,,, because the effort of
solving the P-SV and SH equations, becomes independent of frequency.
Because extended-source calculations have not been done with Green’s
function methods using the approximation of weakly inhomogeneous layers,
we will not dwell on these methods. Cormier (1980), Kennett and
Illingworth (1981), and Chapman and Orcutt (1985) describe useful tech-
niques and their antecedents.

d. Uniform Layers. The theory for calculating synthetic seismograms
is most fully understood for laterally homogeneous structures in which the
material properties are assumed to be piecewise-constant functions of
depth, i.e., uniform plane layers bounded by discontinuities. Historically,
generalized ray theory has been widely used for calculating synthetic
seismograms in layered media for both point dislocations (Helmberger and
Malone, 1975; Helmberger and Harkrider, 1978; Liu and Helmberger,
1985) and for extended sources (Hartzell et al, 1978; Heaton and
Helmberger, 1979; Archuleta and Hartzell, 1981). Generalized ray theory
does not yield complete synthetic seismograms for an inhomogeneous
medium. Consequently, it can be safely used for velocity structures having
only a few layers, but presents difficulties when used in complicated
multilayered earth structures (Hartzell and Helmberger, 1982). For this
reason, considerable effort has gone into developing theory for calculating
complete synthetic seismograms in layered models. Chin ez al. (1984a,b)
review a number of the methods.

For the purpose of extended source calculations, the assumption of
uniform layers has two relevant consequences. First, the expansion coeffi-
cients U(z), V(z2),..., T(z) in Egs. (19) and (20) can be expressed as linear
combinations of simple exponential functions, rather than as more com-
plicated Airy functions or functions obtained numerically on a grid of
points in depth. Second, although not computationally inexpensive, it is at
least feasible to calculate these Green’s functions up to high frequencies,
e.g., 25 Hz.

To elaborate on the first point above, we follow Kennett (1983,
pp. 46—48). Within a uniform layer, the displacement-stress vector b, from
Eq. (21) can be related to the vector v of upgoing and downgoing P and S
potentials through the D, matrix given by Kennett (1983, p. 48) as

b, = D, (33)
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where
vp(2) = Qp(z, 20)Vp(2p), (34)
0,(z, 20) = diag{expl —iwg,(z — z,)]. expl —iwgy(z — zo)],

expliwg,(z — zo)], expliwgg(z — zp)]}. (35)

Here, g, and g, are vertical slownesses:
.= (a7 = p*)"*, (362)
4= (B> = p")"", (36b)
p=k/w. (37)

For the SH problem, exactly analogous equations hold, with
(2, 20) = diag{exp| — iwgy(z — zo)], explivgy(z — z,)]}. (38)

From the form of @, and from Eq. (34), we can see that if we know v at
level z,, which might be the top of a layer, we can determine v anywhere
within the layer by applying Q,. Moreover, the phase advance given by the
four terms in Q, corresponds to upgoing P and S waves and downgoing P
and S waves, respectively. Hence, the elements of v, can be identified as
upgoing and downgoing P and SV potentials, as

VP= [®+9\I,+’(D_’\I,_]T' (39)
The matrices D, and D, are independent of depth within a layer. Since we
can obtain v anywhere within a layer from knowledge of its value on a

boundary, we can use D to obtain b anywhere within a layer. This is
expressed by the construction of the propagator matrix for a uniform layer:

P(z, z,) =D(Z)Q(Z,20)Dﬁ1(zo)- (40)

Because of the form of Q, Egs. (35) and (38), b will be linear combinations
of terms containing exp[iwg(z — z,)]. The task of finding b at each of the
interfaces involves solving the P-SV and SH systems at each of the
interfaces and is discussed in many of the papers already cited.

The simple exponential forms of the v and b vectors can be exploited in
two ways for extended source calculations. The first way has been used by
Bouchon and Aki (1977) and Bouchon (1979). When an extended seismic
source is contained entirely within a layer, the upgoing and downgoing P
and S potentials can be calculated directly for the source thanks to the
simple form of Q,, Eq. (35). These upgoing and downgoing source poten-
tials are then used as a source term in the remainder of the synthetic
seismogram calculation (this will be elaborated on in Section II.C.A.) The
second way of exploiting the simple form of v and b has not yet been used.
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In order to use the form of the representation theorem Eq. (15), the
tractions at all depths must be derived for surface point sources. Equations
(33)—(35) show how the tractions within a layer can be written analytically.
For certain forms of the slip vector s, it may be possible to perform the
vertical part of the fault surface integration analytically.

Computational effort usually goes like £, or f,.. (depending on the
wave number integrations method) for methods using uniform layers. This
compares to factors of 2 for methods that allow arbitrary variation of
material properties with depth. The primary reason for the factor of f .
difference is that the number of layers remains fixed for all frequencies in
uniform layer calculations, whereas the number of grid points in depth
increases with frequency in methods such as the discrete wave number finite
element (DWFE) method (Olson et al., 1984).

More specifically, the calculation time C required by uniform layer
methods generally scales like

C=nmnnng,

where n; and n, are the numbers of frequencies and wave numbers (or
slownesses) at which Eqgs. (21) and (22) are to be solved, n, and n, are the
number of source and receiver depths desired, and n; is the number of
layers. Here, n; is clearly a linear function of f_,., and ng, n,, and n; are
usually fixed for all frequencies. In some methods, such as Kennett (1980),
Apsel and Luco (1983), and Yao and Harkrider (1983), it is very easy to
place a source or receiver at an interface between layers, in which case

C = ninyngn, or nengn ny,

where n, depends on the method used to do the inverse transform Eq. (19).
Kind (1979) and Kennett (1980) use a trapezoidal rule in slowness, so for
them n, is independent of frequency. Apsel and Luco (1983) and Frazer
and Gettrust (1984) use a Filon’s method in which n, probably grows
roughly linearly with frequency. Bouchon (1981) and Yao and Harkrider
(1983) use a discrete wave number summation in which », is, in principle,
independent of frequency but in practice is linear with frequency due to the
convergence criterion used in the wave number integral. Because the
functions U, V,..., T in Eqgs. (19) and (20) become progressively more
oscillatory functions of slowness as frequency increases (see, e.g., Figs. 6
and 7 of Spudich and Ascher, 1983), methods that use a fixed set of
slowness points for all frequencies are likely to become inaccurate at
sufficiently high frequencies.

A final note is appropriate regarding the “accuracy” of uniform layer
Green’s function methods when used to generate the seismic response of
velocity structures having smooth gradients of velocity with depth. A
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uniform layer method will approximate a gradient with a stairstep velocity
structure. At sufficiently high frequencies, the seismic wavelengths will
shrink to a fraction of the layer thicknesses. The resulting Green’s functions
will then display considerable reverberative high frequency energy, corre-
sponding to interlayer multiples, which looks gratifyingly like scattered
waves in real seismograms. Methods like DWFE (Olson ef al., 1984) that
are meant to handle gradient zones properly will yield high-frequency
Green’s functions having simple pulses and lacking all the interlayer
multiples. In a certain sense, methods like DWFE can be thought of as
using progressively thinner layers to achieve progressively better approxi-
mations of a velocity gradient as frequency increases. The DWFE result is
the more accurate result for the desired gradient structure. However, it is
unclear which Green’s function method is better to use considering the
scattering caused by lateral heterogeneities in the earth, which neither
method can handle.

C. INTEGRATING OVER THE FAULT SURFACE

In this section we discuss how the integrals, Eqgs. (12) and (15), have been
performed by various investigators. Instead of presenting all of the relevant
equations in complete detail, we choose to emphasize the concepts behind
the methods. For explicit and implicit Green’s function integration meth-
ods, the relevant concepts can largely be illustrated with a very simple
line-source model of a rupturing fault. For non-Green’s function methods,
it will be necessary to abandon the line-source problem.

In our simplified problem, the analogs to Egs. (12) and (15) are

u(e) = f:odt’foLs(x,t’)T(x,t—t’) dx (4)
u(w) = fOLs(x,w)T(x,w) dx, (42)

where s and T are the slip and traction functions on the line source, which
extends from x = 0 to x = L. For some choices of slip and traction, their
space and time dependence are separable. Thus, under this assumption the
slip function may be written

s(x, 1) = a,(x)f[t = 1,(x)] = a,(x) £, (£)* 8t — 1,(x)], (43)

where x is a position along the line, a, is the slip amplitude, 7(x) is the
initiation time of the slip at x, f,(¢) is its time dependence, and the asterisk
(*) indicates convolution. Similarly, the traction Green’s function imping-
ing upon the line may be given by

T(x,t) = ar(x)frlt — t7(x)] = ar(x)fr(8)*8[t — t7(x)]. (44)
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Their temporal Fourier transforms are
s(x, w) = a,(x) f,(w) exp[ —iwt,(x)], (45)
T(x,w) = ar(x)fr(w)exp[ —iwtr(x)]. (46)

In the ensuing discussions, we will occasionally simplify further as neces-
sary by assuming that a(x)=a;(x)=1 and f(w)=fr(w)=1 In
particular, we may assume that the traction Green’s function is a plane
wave, in which case

tr(x) = prx, (47)

where p, is the component of the wave’s slowness (1 /velocity) along the x
axis, and we may assume that the source’s propagation velocity v, (rupture
velocity) is constant, so that

t,(x) = x/v. = p.x, (48)
where p, is rupture slowness (Fig. 5).

1. Ray Theory and Kinematic Sources

Both ray theory and Gaussian beam Green’s functions can be calculated
rapidly for laterally varying media. Bernard and Madariaga (1984) and
Spudich and Frazer (1984) have combined ray theory Green’s functions
with extended source models, while Cerveny er al. (1987) and Cormier and
Beroza (1987) have used Gaussian beams. For simplicity we will demon-
strate how ray theory is used with extended sources. A slip function in the
form of Eq. (43) is used in many kinematic source models (Section 1.A). A
Green’s function given by Eq. (44) is appropriate for describing a propagat-
ing nondispersive pulse, such as the far-field term of the asymptotic ray
theory Green’s function. In this case ¢-(x) is simply the ray theory travel
time from x to the observer. Straightforward substitution of these two
expressions into the representation theorem, Eq. (41), leads to an exact and
rather simple integration formula,

u(t) = f,()* fr (1) _[)Las(x)ar(X)S[t —t,(x)]dx,  (49)

where
t,(x) = t,(x) + t7(x) (50)

is the arrival time function, i.e., it is the time that a ray generated by the
rupturing of x arrives at the observer. Note that the integrand of Eq. (49) is
nonzero only where the argument of the delta function is zero, i.e., only for
the roots of the equation

t—1,(x)=0, 0<x<L. (51)
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> x, Bt L

FI1G. 4. The rupture time function #,(x) and the travel time function 7y (x) are added to
form the arrival time function ¢,. For time ¢ = t;, Eq. (51) has two roots in [0, L], £,(¢;) and

£,(1)).

Hence, the integral Eq. (49) may be converted to a sum over the roots of
Eq. (51). The number m(¢) of roots in the interval [0, L] will depend on ¢
and on the shapes of the ¢, and ¢, curves (Fig. 4). Let us denote the roots
by £.(¢), i=1,2,..., m(¢). Generally, there will be only one root for
unilateral rupture propagation or two roots for bilateral propagation, unless
the rupture velocity exceeds the P- or S-wave speed somewhere in [0, L], in
which case there may be extra roots. Using the relation

[ a(x)8lt - ()} dx =[a()08 Nimgmor (52)

Eq. (49) becomes
m(t)

u(t) = f,()* fr(0)* X a,[£,(D)]arl§;(0)]el§;()], (53)

Jj=1
where
c[gj(t)] = ldt[gj(t)]l' (54)

The term c¢ is the velocity of the roots (Fig. 4), and ¢! is exactly equal to
the seismic directivity function for this line-source problem (Spudich and
Frazer, 1984).

Bernard and Madariaga (1984) have introduced the idea of “critical
points” to approximate Eq. (53) even further. Consider the behavior of u(t)
as ¢t increases from 0 to oo. For ¢ < ¢, (Fig. 4), m(¢) =0 and u(¢) = 0.
When ¢ exceeds t,, m(t) instantaneously jumps to 2 and u(¢) instanta-
neously takes on a finite value. As ¢ approaches z,, the root §,(z) ap-
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proaches 0. When ¢ exceeds t,, m(¢) suddenly drops to 1 and u(t) suffers
another jump discontinuity. A similar set of phenomena occurs when ¢
exceeds ¢;. Because the high-frequency part of u(t) is dominated by its
jump discontinuities, u(z) can be approximated by pulses from the three
places on the fault, x = 0, x,, and L, associated with the discontinuities.
These are the critical points. In our one-dimensional example, the critical
points are the places where roots £, and £, either materialize or disappear.
An additional critical point can occur at places where ¢ becomes singular,
which will happen in the case of super-shear rupture velocity. We note in
passing that seismogram amplitudes are linearly related to ¢, which is a
nonlinear function of rupture time. This explains the strong influence of
rupture time variation on seismogram amplitudes noted by Archuleta
(1984).

For a two-dimensional fault, the result of Eq. (53) is easily generalized. If
X is a position on the fault surface Z, then the arrival time function is

1,(x) = t,(x) + 17(x). (55)

The equation
t—1,(x)=0 (56)
is satisfied on the curve £(¢), which is an equal time contour [called an

isochrone by Bernard and Madariaga (1984)] of the ¢, function. The term ¢
now becomes the velocity of an isochrone perpendicular to its length

() =Ive,(0)1 7 (57)
and the two-dimensional analog of Eq. (53) is
u(t) = f()* fr(1)*1(2), (58a)
I(1) =/ a (x)ar(x)c(x) dl, (58b)
£

where [ is the arc length along the curve £(¢). Each time point in the
seismogram is obtained by doing a line integral along an isochrone.
Evaluation of I(¢) in Eq. (58b) is quite simple for an arbitrarily com-
plicated 7,(x) using the algorithm of Spudich and Frazer (1984). A large
fault > is broken into a set of triangular subfaults. If the three vertices of a
triangle are located at x,, x,, and x;, we define the quantities

g = a,(x;)ar(x;), (59)
T = 1,(x;) (60)
for i = 1,2,3, and we approximate g and 7 for x inside the triangle by
linear interpolation between the values at the three vertices. Then c(x) is

constant within a triangle, isochrones are easily found straight lines cutting
across the triangle, and the integrand g(x) is a linear function along an
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isochrone and can be integrated exactly. Using this approach I(¢) is
obtained separately for each triangular subfault; the subfaults may be dealt
with in any sequence, and no complicated curve-following algorithm is
needed to integrate along the isochrones. A typical calculation may involve
5000 subfaults.

Note that the result expressed in Egs. (58a and b) is the exact result for
the far-field Green’s functions and is valid even when the observer is very
close to the source. Spudich and Frazer (1984) note that the term “far-field”
has been used both to describe certain terms in the Green’s function and to
describe a region, far from an extended seismic source, where the
Fraunhofer approximation holds (Aki and Richards, 1980, pp. 804-805).
They suggest the use of the terms far-source and near-source to describe the
region where the Fraunhofer approximation is valid or invalid, respectively.
Thus, Eqgs. (58a and b) are the results valid in the near-source region for
far-field Green’s functions. What is missing from Egs. (58a and b) is the
near-field term of the Green’s function. Because the near-field term is
inherently lower in frequency than the far-field term, and because it decays
more rapidly with distance, omission of this term leads to low-frequency
errors at short epicentral distances. Farra et al. (1986) have investigated the
importance of this omission. They have additionally extended the iso-
chrone-integration technique to include multiple rays and maximum time
pulses.

2. Point Source Summation

In performing the integrals Eqs. (12) and (15), an assumption frequently
made in seismology is that a large earthquake can be simulated by a grid of
point dislocations (Heaton and Helmberger, 1979; Archuleta and Hartzell,
1981; Bouchon, 1982; Heaton, 1982; Hartzell and Helmberger, 1982;
Campillo and Bouchon, 1983; Liu and Helmberger, 1983). In this case the
integrals over the fault surface in Eqs. (12) and (15) are replaced by a
summation of all the point sources, i.e., Eq. (41) is approximated by

u(t) = Zs(xj,t)*T(xj,t) Ax,, (61)

j=1

and Eq. (42) is approximated by

n

u(w) = Zs(xj,w)T(xj,w) Ax;, (62)

Jj=1

where the interval [0, L] has been broken into n segments of width Ax;
with sample point x; at the midpoint of segment j. Both Egs. (61) and (62)
are straightforward to compute and should yield identical results. For this
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F1G. 5. A seismic source propagates from x = 0 to x = L with slowness p,. Plane waves

emitted from distant observers at B, N, and F propagate with true slowness p, and the
component of wave slowness along the x axis is ps.

reason we will refer to the point-source summation technique without
always being specific about whether it is performed in the time or frequency
domain.

The accuracy of the technique is more easily understood by analyzing the
frequency-domain version. The point-source summation technique evaluates
Eq. (62) by using the familiar midpoint rule for numerical quadrature. The
accuracy of this approximation is highly dependent upon frequency and
upon the observer’s position with respect to the rupture propagation
direction, as can be easily shown in our simple example. For simplicity,
assume a plane wave, Eq. (47), and a constant rupture velocity, Eq. (48),
and ignore amplitude variations and source time functions. Then

sT = exp[—iw(p, + pr)x]. (63)

If we are considering S waves from the rupture, and if the rupture velocity
is close to the shear velocity, then from Fig. 5 it is clear that p, + p; = 0
for observers in the forward direction; p, + p; = p, for observers normal
to the fault; p, + p; = 2p, for observers in the backward direction. In Fig.
6 it can be seen that the integrand becomes progressively more oscillatory
as frequency increases or as the observer moves toward B. If the sample
points {x;} in Eq. (62) are held fixed for all frequencies and observers, the
computed value of u(w) will be more accurate for low frequencies than
high and for observers in the forward direction. In fact, this breakdown of
the point-source approximation is well known (Hartzell er al., 1978), and
examples will be shown in Section III.A.1.

If evaluation of the integrand were easy, the most straightforward way to
improve accuracy would be to decrease the sample spacing Ax; until the
integral converged to a stable value. However, for dynamic source models,
s(x,t) can be very expensive to calculate, as can T(x,t) for complete
Green’s functions. Hence, in general, we would like to perform Eq. (42)
with as few expensive integrand evaluations as possible.
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F1G. 6. Behavior of sT as a function of position. (a) p, + pr is held fixed and sT is
plotted for three differing frequencies (with vertical offsets). (b) The frequency w is held fixed
and sT is plotted for observers in the direction of rupture (F), normal to the fault (N) and
opposite the direction of rupture (B). See also Fig. 5. Here x, ..., x, are sample points for the
numerical quadrature. Clearly the integrand becomes undersampled as w becomes large and
when p, + p, becomes large.

3. Improvements on Point Source Summation Using Kinematic
Slip Functions and Complete Green’s Functions

Let us consider how the quadrature Eq. (62) can be improved under the
assumptions that s is easily calculated and T is quite expensive to calculate.
This case corresponds to the most commonly employed approximations
used in actual ground motion modeling: s is derived from a kinematic
source model, while T is a complete Green’s function.

Under these assumptions, the basic approach has been to make the
sample intervals {Ax;} as small as necessary to ensure convergence of the
sum Eq. (62). Because the calculation of s is easy, it is obtained exactly at
each sample point. However, T is calculated exactly only at a few widely
spaced sample points, and it is derived at the intervening quadrature points
{x;} by an interpolation scheme.

a. Explicit Interpolation of Green’s Functions in the Frequency Domain.
The method of Spudich (1981), which was used by Archuleta (1984) to
model the 1979 Imperial Valley earthquake, interpolates T explicitly in the
frequency domain and works as follows. From Eqs. (45)-(48) we can see
that s and T are basically oscillatory functions of position with spatial
wavelengths v_/f for s and B/f for T, where f is the frequency w/27 and
B is the shear wave velocity. Because generally v, < 8, the spatial wave-
length of s is less than that of T for equivalent f. Then, T may be specified
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by exact calculation of its values on a grid of points {ij } with spacing

Axp(x, f) = B(x)/(mf), (64)

where m is the desired number of sample points per shear wavelength.
Similarly, s is specified by exact calculation on a grid of points {xs,-} with
spacing

Ax,(x, f) = v(x)/(nf), (65)

where n is a desired number of sample points. Note that the sample spacing
decreases as frequency increases (Fig. 6), and that it can also vary depend-
ing on local S-wave and rupture velocities. In addition n can be chosen
larger than m to improve accuracy. Consequently, the method of Spudich
(1981) can be regarded as a crudely adaptive quadrature with the adaptive
rules built in a priori. Equations (64) and (65) cannot be used for very low
frequencies because s and T are not constant over the fault at w = 0. In
practice some maximum allowable Ax, and Ax; are specified and used
when Eqgs. (64) and (65) specify greater Ax; and Axy.

Trapezoidal-rule quadrature of the product sT is performed separately
for each frequency, with the quadrature points being the sample points
{x,} of s, and with the values of T at the points {x, } derived from the
exact values at {x7} by linear interpolation (Fig. 7). Two strengths of this
procedure are that ‘the error of the quadrature is independent of frequency
(unlike direct point-source summation) and that the method for interpolat-
ing 7 is valid regardless of the types of seismic waves that comprise T. The

(a) (b)

sorT M
Wo S

x Xl X2X3 x
FiG. 7. (a) Both s and T oscillate as a function of position x on the fault. They are both
evaluated exactly at sample points whose spacing decreases with increasing frequency. (b)
Here, s and T do not have the same wavelength on the fault; s is evaluated exactly at
quadrature points x;, x,,..., while values of T at the quadrature points are determined by
linear interpolation between nearby exact values. The closed circle (@) indicates values
calculated exactly and the open circle (O) indicates values derived by linear interpolation.
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method’s chief disadvantages are that computational effort and storage are
proportional to the cube of the frequency bandwidth for two-dimensional
faults. For any single frequency f, the number of quadrature points on the
fault is proportional to (Ax;) ™2 or f2. Hence, to obtain seismograms in the
frequency band (0, f,,), computing effort and Green’s function storage
scale like f3_.. This scaling limits the frequency band in which the adaptive
method may be applied. We note in passing that we have also tried to
integrate sT by Gaussian quadrature and by analytic integration of a
piecewise cubic spline passed through the samples of sT, but have found
the trapezoidal rule to be more dependable. While it is true that other
integration methods converge more quickly than trapezoidal rule as sample
spacing decreases, the obverse of that statement is also true; other methods
diverge more rapidly as sample spacing increases. Our experience is that
trapezoidal rule gives the most reliable results in massive computations that
operate on the verge of undersampling. However, we have not investigated
other quadrature methods exhaustively.

b.  Explicit Interpolation of Green’s Functions in the Time Domain. At
present there are time-domain Green’s function interpolation methods that
avoid the £, storage requirement for Green’s functions at the expense of a
less accurate interpolation scheme. Some investigators (see, e.g., Hartzell
et al., 1978; Heaton and Helmberger, 1979; Heaton, 1982; Hartzell and
Helmberger, 1982; Liu and Helmberger, 1983) perform an explicit time-
domain point-source summation of the form

u(t) = [)Las(x)ﬂ(t)* 8[t — t,(x)]*T(x, t) dx, (66)

u(r) =)= “a,(x)TLx, t — 1,(x)] dx

= fi(0)% ¥ ay(x)Tlx,. 1 - 1,(x))] Ax,, (67)
j=1

where Eq. (43) has been used to define s(x, t) but T(x, t) has been left
general. Because the slip time function f, is independent of position, it has
been factored out of the sum. Because T is expensive to calculate, it is
obtained on a sparse grid of points { Xr, } and its value at quadrature points
x; is obtained by linear interpolation that incorporates a particular physical
assumpuon about T. Hartzell et al. (1978) assume that T is composed of a
set of dispersive pulses that can be separated in time and have characteristic
phase velocities. In their method each pulse in a seismogram is interpolated
individually. For a half-space there are only four pulses, P, S, SP, and the
Rayleigh wave. Suppose that exact Green’s functions are known at xr, and
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F1G. 8. Exact Green’s functions calculated at xr, and xr,, . Each contain a pulse traveling
at velocity ¢. Exact seismograms are appropriately stretched or compressed so that the pulses
align horizontally. Linear interpolation can then be done to obtain a Green’s function at
x; (—, exact; ——-, stretched; —-—, interpolated).

xr, » and we desire to interpolate between these two points to obtain an
approx1mate Green’s function at x;. Suppose also that we interpolate a
single pulse that arrives at x7, at tlme t; and at x; at time ¢, Then the
interpolation rule of Hartzell ez al. (1978) 18
. (tm )t
T
1 t_/

1, 1,
T|:XT,»’ t—t] + t+1
J J
(68)

The exact Green’s functions are first stretched or compressed in the time
domain. They are weighted by a factor that introduces a R™! amplitude
behavior in addition to the usual linear interpolation weighting factor (Fig.
8). This procedure works very well for a half-space (Fig. 9) but introduces
pulse shape distortions for nondispersive waves (Fig. 8).

In many cases the largest pulse in a Green’s function is a body wave
similar to the direct S wave, in which case the time stretching used by
Hartzell et al. (1978) can be replaced by a simple time shift that aligns the
important pulse (Heaton and Helmberger, 1979; Heaton 1982; and
Hartzell and Helmberger, 1982). In this technique the R™ ! scaling is also

f= b, t,—t

T(x;,t) = —

L L= lin

L= i
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F1G. 9. Examples of linearly interpolated Green’s functions for (a) radial ( R), (b) vertical
(2), and (c) azimuthal (¢) components of displacement for a strike-slip double-couple source,
from Hartzell er al. (1978). The interpolated Green’s functions are compared with those
calculated directly by a Cagniard—deHoop method. (Reprinted with permission from the
Bulletin of the Seismological Society of America.)

omitted, in which case Eq. (68) becomes

to—t
T(x; 1) =|2—"=|T(xp, 1+, — 1)
i Tl
Livi — Y
+ P T(xr, ,t+ 1t —1t), (69)
i i+1

which corresponds to shifting the time series the same amount as indicated
in Fig. 8 without stretching the seismograms. The implementation of both
Egs. (68) and (69) becomes quite complicated if pulses having differing
phase velocities cross, and if the exact Green’s functions do not consist of
distinct arrivals, the methods break down. In practice, this interpolation is
generally used assuming that the S wave is the only significant arrival,
which is usually true near buried seismic sources. Interpolation using
S-wave phase velocities will cause errors for waves traveling at other
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velocities, such as P waves and surface waves. For interpolation when a
mixture of waves is present, slant-stacking techniques may prove useful
(Cabrera and Levy, 1984). The advantage of the procedures presented in
Egs. (68) and (69) is that for calculations in the frequency band (0, ),
the storage space required for the Green’s functions is proportional to f,,,,
which is much more manageable than f23, . In addition a minimal number
of expensive theoretical Green’s function evaluations are needed. However,
the actual performance of the point-source summation Eq. (61) is not
facilitated by this interpolation.

c. Implicit Green’s Function Extrapolation Using Temporal Convolution.
Using the assumption that the Green’s function is dominated by the S
wave, Apsel et al. (1981) have developed a simple procedure, using iso-
chrone integration, which simultaneously extrapolates the Green’s functions
and includes the effects of rupture propagation. Suppose we have calculated
T(x, t) exactly on a set of sample points {xT }, and we wish to approximate
T(x, t) at nearby points simply by shifting T(xT, t) forward or backward
in time so that the S wave of the interpolated selsmogram always arrives at
x at time #(x), as in Eq. (44). We may also want to modify the amplitude
of the interpolated seismogram by some factor A(x, x) to account for
geometric spreading or other factors. Then our extrapolated Green’s func-
tion may be written

T(x,1) = A(x, x7)T(x7, t)* 8t + tr(xg) — tr(x)], (70

with A(xT, xr ) = 1. Note that Eq. (70) involves only X For this reason
Eq. (70) is an extrapolation. Let our integration interval [0, L] be broken

into n domains of width AxT, =1,2,..., n, with each domain covering
the interval [x Ly X, I. Let the’ shp be glven by
s(x, 1) = a,(x)f,()* 8[1 = 1,(x)], (1)

where ¢,(x) is the time that rupture initiates at point x, and f,(?) is the slip
time function, which in this simple example we fix to be independent of
position. From Eq. (41) we then have

u(t) = [0+ X T(xg, 1)« 1), (1)
j=1
I(t) = '/:G’as(x)A(x, x7)8[1 = 1, (x)] dx. (73)
where I
1 (x) = tr(x) = tr(xp) + 1,(x) (74)

is an arrival time function analogous to Eq. (50). Thus, applying the same
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trick of Eq. (52) to Eq. (73) gives
m(t)

Lin=1X% a,[£()]14[£.(1), x7 ] e[&(D)], (75)

where {£,(¢)} are the m(t) roots of ¢t — ¢, (x) = 0 in the interval [xL , xG]
and where

clé(0)] = 1d £, (1) (76)
Thus, 1,(z) is a convolution filter that is applied to the point-source Green’s
functlon T(xT, t) in Eq. (72) to correct it for the effect of rupture propa-
gation across the domain [x Ly Xg, ], using the extrapolation rule of Eq. (70)
for Green’s functions. As long as the extrapolation rule is valid (i.e., as long
as most of the energy in the Green’s functions propagates at the S-wave
velocity), use of Egs. (72) and (75) will lead to a synthetic seismogram that
is independent of grid size Ax;. Of course, phases traveling at other
velocities, such as surface waves, will not be interpolated properly. For the
amplitude correction factor 4, Apsel et al. (1981) use

A(x, x7) = [r(xg)/r(2)] ", (77)

where r(x) is the distance from the observer to the point x on the fault,
and P is approximately 2.0. However, they point out that the amplitude
correction is of considerably less importance than the time correction,
particularly at distances greater than 5 or 10 km. Equation (72) assumes
that the slip function f,() is the same over the entire fault. If the slip time
function is independent of position within each domain [x L %] but varies
from domain to domain, then Eq. (72) may be rewritten

u(t) = ; fs('xT}’ t)*T(xT], t)*Ij(t). (78)

If further spatial variability of f, is desired, then the domain [x Ly X, ] can
be subdivided into many smaller subdomains in which f, is posmon
independent, and /;(¢) can be written as a sum of terms, each similar to Eq.
(75) and each convolved with its own f,(¢). This would be a computational
inexpensive way of allowing f,(¢) to vary within [x Ly X ]. Similar to the
explicit time-domain Green’s function interpolation methlods this implicit
extrapolation method requires a relatively small number of exact Green’s
function evaluations, and the necessary Green’s function storage grows
linearly with frequency bandwidth. The computational effort of calculating
I,(¢) in Eq. (73) and its two-dimensional analog Eq. (58b) probably scales
11ke /2. for a two-dimensional fault because the necessary time sampling
1nterva1 goes like £, 1 as does the length of the line integral segment d/ in
Eq. (58b).
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4. A Non-Green’s Function Method Using Simple Kinematic
Source Models in a Layered Medium

Thus far all the methods that we have discussed that use complete
Green’s functions have been explicit Green’s function integration methods.
In all these methods, the slip models and the Green’s function T are
calculated independently of each other. Bouchon and Aki (1977) and
Bouchon (1979) introduced a non-Green’s function method in which an
extended seismic source is explicitly used for the source term for wave
propagation in a layered medium. This is made easy for them by their use
of Cartesian coordinates in a homogeneous layer. In the following discus-
sion we follow the derivation by Chouet (1987). We saw earlier in a laterally
homogeneous medium how the effect of a point seismic source at depth can
be included as a discontinuity in the displacement-stress vector b at depth
z. When an extended seismic source is enclosed within a uniform layer, the
effect of the extended source may be included in a different way by
determining the stresses and displacements it causes on the overlying and
underlying layer interfaces. Propagator matrices are then used to relate
these source-induced stresses and displacements to those at the free surface
and in the underlying half-space. Once this is done, the wave propagation
through the layers is accomplished using the method of Dunkin (1965).
While the use of Cartesian coordinates is not essential to the method, it
simplifies the integrals over the sources that are used to determine the
stresses and displacements it causes.

We start with a layered velocity structure, as in Fig. 10 and the Cartesian
coordinate system of Fig. 3. The ground displacement u may be written

oo 0
u(x, y,z,w) = f f u(k,, k,, z, w)exp(—ik,x — ik,y) dk, dk,.
—0Y -0
(79)

As discussed in Section ILB.2.b, to obtain u(k,, k, z, @) at a particular
point (k,, k) involves the solution of the P-SV and SH problems for a
plane wave w1th wave number k = k X + k,§. This yields radial, trans-
verse, and vertical displacements u,,, u ., and u,, which are all functions of
k,, k,, z, and w. Displacements in the x and y dlrectlons are obtained by

u,= (kx/k)ux’ - (ky/k)uy” (803)
and
uy = (ky/k)ux’ - (kx/k)uy” (8Ob)

where k = |k|.
We follow Chouet (1987) in obtaining u,,, u,,, and u, for an extended
source. Consider first the P-SV problem and define the displacement-stress
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F1G. 10. Cross section of a homogeneously layered earth model. Material properties are
constant within each layer. The source is a strike-slip fault in the x—z plane extending from
x =0 to x = L and bounded by depths Z, and Z,. Slip is uniform over the fault, and rupture
propagates in the +x direction as a vertical line with velocity u,.

vector b to be [u,,, u,, 0, 0,.]". We note that this definition is slightly
different from Kennett’s. Following the layer numbering scheme of Fig. 10,
let b,(z) be the displacement-stress vector at depth z in layer n. Assume for
the moment that we know b%(z,_,) and b%(z,), which are the displacement-
stress vectors above and below the source caused by upgoing and downgoing
waves, respectively, generated by the source. The total displacement-stress
vector at depth z,_;,b(z,_,), is a sum of the upgoing waves from the
source, b%(z,_;), and reverberated waves coming from other depths. We
relate b at the top of the source layer to b at the free surface:

bs(zs—l) = Ps—lPs—Z Plbl(o)’ (81)
where we define P, to be the propagator across the nth layer,
Pn=Pn(Zn—l’Zn)' (82)

The b at the bottom of the source layer is related to b in layer I, the
underlying half-space, by

b/(z1—1) =P _P_, - Ps+1bs+1(zs) (83)
and from Eq. (33)
vi(z, ;) +‘Dl_1bl(zl—1)' (84)
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Our boundary conditions are a stress-free surface at z = 0,

by(0) = [u,, u,,0,0]", (85)
no upgoing waves in layer /,
v(z,) =[0,0,07, %], (86)
and continuity of b across all interfaces,
b,..(z;) =b(z), i=1,...,s—1,s,...,1 -1 87)

We note that Eq. (87) shows explicitly that in Chouet’s (1987) formulation
the source contribution does not cause a discontinuity in b at an interface.
Then

b,(z,) = bY(z,) = P,[b,(z,.1) = BY(z,_1)], (88)
i.e., the propagator connects only the reverberated components of the waves
at levels z,_, and z,. Skipping the details of the subsequent derivation,
which are found in Chouet (1987), we finally obtain
Uss (kx’ ky)
= R1_11[Q11Q12bg(zs—1) - P11P12bg(zs)] (39)
uz(kx’ ky)

for the radial displacement u . and vertical displacement u, caused by
source terms b%(z,_,) and b%(z,). Here,

P=D;'P_y - Py, (902)
Q=P_, --- P, (90b)
and
R=D\P_y -+ Py, (90c)
and each of these 4 X 4 matrices is partitioned into four 2 X 2 matrices,
e.g.,
R, R
R= [_31;___13}. o)
Ry | Ry

1

The matrix R;;' may be written

Ry =Ry /IRy, (92)

where |R,,| is the determinant of R,; and is the secular function for the
layered medium and R, is the transpose of the cofactor of R;;. Of course,
direct evaluation of |R;;| and products R,,0,, and R P;; lead to well-
known instabilities (Chin et al., 1984b). Bouchon (1979) and Chouet (1981,
1987) use the method of Dunkin (1965) to evaluate these terms. Equation
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(89) is used to obtain u,, and u,, and u, is found using a similar equation
for the SH problem. Displacements in the x-y—z coordinate system for a
plane wave with wave number k are derived from Egs. (80a and b), and the
total ground motion is a sum of all the plane wave components of Eq. (79).
We comment later on how this integral is performed.

We now turn to the derivation of b%(z,_,) and b,(z,), the displacement-
stress vectors resulting above and below the source from the upgoing and
downgoing source radiation. We follow the approach of Bouchon (1979)
and integrate the upgoing and downgoing P and S potentials and then use
Eq. (33).

The displacements u in the medium are related to the potentials ® and ¥
by

u=vod+v xV¥, v ¥ =0, (93)

where ¥ = (¥,,¥,,¥,)" (Fig. 3), and ® and ¥ are solutions to the wave
equations

V20 =1/a’30, (94a)
v2¥ =1/820V. (94b)
Within a uniform layer, they may be written as plane waves of the form
P(w) = Aexp(—ik,x — ik,y + ivz), (95a)
¥(w) = Bexp(—ik, x — ik,y + iyz), (95b)
where
v=(k2-k2-k2)"* mmv<o, (96a)
and
y=(kj—k2-k2)"", Imy<o, (96b)

are vertical wave numbers with k, = w/a and k= w/B being wave
numbers along the direction of propagation of P and S waves, respectively.
The plus and minus signs correspond to upward and downward propa-
gation, respectively.

A point dislocation can be represented by an equivalent double couple of
point forces. If ®*, ¥*; @, ¥”; and ®~, ¥~ are the potentials radiated by
point forces applied at (x,, y,, z,) in the x, y, and z directions, respec-
tively, then the potentials radiated by a point dislocation at (x,, y,, z,)
having the same mechanism as our extended source (Fig. 10) are

q)p(x9 Y Z) = m(xO’ ZO)[ayOQX(x’ Vs Z) + ax()@y(x’ Vs Z)] (973)
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and
\I'p(x’ Vs Z) = m(xo, ZO)[ayo\I'x(x’ Y, Z) + axo‘I’y(x’ ¥, Z)], (97b)

where m(x,, z,) is the moment density per unit area of the source.
Equations (97a and b) are valid for a left-lateral, strike-slip dislocation.
Similar terms can be found for other dislocation mechanisms. Hence, to
find the total potential radiated by an extended source, we integrate Egs.
(97a and b) over the fault surface. If slip on the fault is given by
5(xg, 2o, w), then the radiated compressional potential is

®(x, y,z,0) = ,uszZfLs(xO, 29, w)[9,®% + 9, @7] dx, dz,, (98)
z %0

with a similar expression for ¥. The expressions for the potentials radiated
by a point force in the x direction are of the form

®* = (k,/v)expl—ik (x — xo) — ik, (y = yo) — ir|z = z,|], (992)
and
v = (ky/Y)exP[“ikx(x - Xg) — iky()’ = ¥o) — ivlz — zo|]] (99b)

(Bouchon, 1979, Eq. (13)), with similar expressions for other components of
¥ and point-force directions. The absolute value signs in Eqgs. (99a and b)
ensure that we have downgoing waves below the source depth z, and
upgoing waves above. For simplicity we define

e, = expl — ik, (x = xo) = ik,(y = 3o) = ivlz = 2] (100a)
and
e, = exp| — ik, (x — xo) — ik,(y = yo) = ivlz — z|].  (100b)
Because of the form of the potentials, Egs. (99a and b), spatial differenti-
ation to obtain the potentials caused by force couples is easy, e.g.,
2, @ = ik, 0*. (101)
Hence, the compressional potential radiated from the extended source of
Eq. (98) will be a sum of terms of the form
®(k,, k,, z,0) = F(w, k,, k,)IF, (102)

where

Z, (L
I.= /ZI '/0 pse, dx, dzg, (103)

and where F(w, k,, k) is a product of terms like the k, /v in Eq. (99a),
and the ik, in Eq. (101) Similar expressions can be written for ¥. We
separate F from the integrated source term I to emphasize that I is the
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two-dimensional Fourier transform of the slip distribution. If the slip
function s is sufficiently simple, I can be obtained analytically. For
example, Bouchon (1979) accomplishes this by using

s(xo’ Z9s w) = (D/lw) exp(_ixo/vr), (104)

where D is a constant dislocation. The exponential phase factor corre-
sponds to a unilateral rupture in the x direction with speed v,. Chouet
(1982) treats the problem of an expanding circular tensile crack, and in I,
he uses

s(r,8,0) = (D/iw)exp(—iwr/v,), (105)

where r and @ are a cylindrical coordinate system with the origin at the
center of the crack. For this choice of s, I can also be integrated analyti-
cally. For some choices of s, the integration over one dimension of the fault
can be done analytically, whereas the other dimension must be integrated
numerically. Chouet (1981), studying a fluid driven tensile fracture, uses an
opening function that varies with x, but is independent of z:

s(xg, 29, 1) = D(xq, t), (106)

where D(x,, t) is the output from a 2D finite-difference simulation of the
fracture process. In this case the analytic integral over z,, is straightforward,
but the integral over x, must be performed numerically. Chouet performs
that integral by using the rectangle rule quadrature. Other applications of
this technique can be found in Chouet (1983, 1985). An alternative method
for such integrals might be a generalized Filon method (Frazer and
Gettrust, 1984).

Equation (102) and analogous equations give us the source-induced @
and ¥ at depths z,_; and z,. We can use Eqgs. (33) and (39) to write the
source terms needed in Eq. (89),

bY(z,_,) = Dpv(z,_y) (107)
and
b)(z,) = Dp(z,), (108)
where
V(z-1) = [97(2,01), ¥7(2,.1),0,0]", (109)
and
v(z,) =[0,0,®(z,), ¥ (z,)]". (110)

The component ¥* of ¥ associated with the P-SV propagation having
wave number k is the component of ¥ lying in the x—y plane perpendicular
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to k (Fig. 3):
v, = (k¥, — ky‘Ifx)/k, (111a)
V= ¥,(z, ), (111b)
¥ =¥,(z). (111¢)

Here, ®* is given by evaluating Eq. (102) for z = z,_;, and @~ is obtained
from Eq. (102) with z = z_.

The derivation of b® for the SH problem is slightly different from that
for the P—SV problem, because it is not necessary to use the SH form of Eq.
(33) to transform from potentials to displacement. If we denote the compo-
nents of SH displacement above and below the source as u), and u,
respectively, then ‘

us=ilk¥, + (v/k)(k ¥, + k¥)] (112)

(Bouchon, 1979, Eq. (23)), and
B(z,_y) = uy (1, iny,], (113)
bl(z,) = uy (1, —ipy]" (114)

(Chouet, 1987).

A final comment is warranted on the evaluation of the Fourier transform
over the wave number (Eq. 79). Any of a variety of quadrature rules could
be used (Frazer and Gettrust, 1984). Bouchon and Aki (1977) and Bouchon
(1979) use the rectangle rule quadrature to convert Eq. (79) to the form

ud(x,y,z,w)z[4vr2/LxLy] Y Y. Kg(n,n), (115)

x="00 n,=—00
where
Kp(n,n,)=ulk,k,z, w)exp(—ik x — ik,y), (116)
k,=2an L, k,=2mn/L, (117)

and where the d subscript indicates the result of a discrete sum. Their
conversion of the continuous integral to a discrete sum has interesting
properties. In this particular problem, use of the rectangle rule happens to
give the exact answer to a different but related physical problem, one in
which there is a grid of identical sources separated by distances L, and L,
in the x and y directions. Consequently u,(x, y, z, t) will be identically
equal to the result for a single source u(x, y, z, t) for times ¢ up until the
wave from the nearest multiple source arrives at the observer. Hence, this
time can be made arbitrarily large by choosing L, and L, sufficiently large.
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Another way to look at the properties of the discrete sum is to recognize
that Eq. (79) is a spatial Fourier transform because of the exponential term.
By using the sum, Eq. (115), we are implicitly saying that K(k,, k,) is a
sum of Dirac delta functions of the form LY &(k, — 2an /L, )8(k, —
2@n,/L,), where k, and k, are continuous variables. Hence its Fourier
transform must be periodic in space. The use of the discrete transform is in
no way necessary for including the effects of an extended source.

The conversion from integrals over k, and k, to the discrete sum can be
performed at any stage in the derivation. We have delayed its introduction
until after derivation of the potentials from the extended source; Bouchon
and Aki (1977) and Bouchon (1979) introduced it earlier and expressed the
point force potentials ®*, ¥*; & ¥, and ®2 ¥*? as discrete sums. The
actual evaluation of the sum is the last step in obtaining the extended-source
seismograms.

From the standpoint of extended-source modeling, the most useful
consequence of this method of inverse transformation is that it yields the
ground motions at a dense grid in x and y of observer locations. By
contrast, all of the implicit and explicit Green’s function integration meth-
ods we have previously discussed yield ground motions at a small set of
observer locations. Hence, this method would be quite useful for studies of
ground motions over large regions (Bouchon, 1980a,b; Chouet, 1981, 1983,
1985).

III. Examples of Finite Fault Calculations

A. HASKELL MODEL IN A WHOLE SPACE

Although a Haskell model of rupture occurring in a uniform whole space
was never considered, even by Haskell himself, to be a realistic model of an
earthquake, it conveniently illustrates a few of the principles presented
earlier. Figure 11 shows our test geometry. The fault is a 1 km X 1 km
square lying in the x,;-x, plane, centered on x, = 0, x, = 0. The rupture
front is a line parallel to the x, axis, and it advances at a uniform velocity
in the +x; direction. The slip vector is uniform everywhere and is parallel
to the x; axis. Five observer locations are considered: two in the forward
direction (F; and F,), two normal to the fault (N; and N,), and one in the
backward direction (B). Except when stated otherwise, rupture velocity in
all these examples is 3.0 km /sec, slip velocity is 1.0 cm/sec, rise time is 0.12
sec, and the medium parameters are a = 6.0 km/sec, 8 = 3.4 km/sec, and

p =25 gm/cm’.,
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RUPTURE |
FRONT

FI1G. 11. Geometry of fault and observer locations F; (3.0, —0.5,0.5), F, (1.5, —0.5,1.0), N,
(0,0.5,0.43), N, (0,0.5,0.2), and B (—3.0, —0.5,0.5) for a Haskell model in a wholespace. The
fault is 1 km X 1 km and lies in the x,—x, plane. The rupture front is a line parallel to the x,
axis that advances with constant velocity in the +x, direction. Slip is parallel to the x, axis
and has constant amplitude on the fault.

1. Point-Source Summation

The characteristic behavior of the point-source summation method be-
comes immediately obvious if we examine the form of s and T on the fault
surface. Suppose we wish to simulate our Haskell model by using a grid of
30 X 30 point sources on the fault and using the form of the representation
theorem, Eq. (15). For an observer at F, and for « = 207 sec”},
Re[T}(x, w; F},0)] is shown in Fig. 12, sampled on the 30 X 30 grid.
Because the Green’s function is dominated by the far-field S wave at this

X)o km

FIG. 12. Real part of the x; component of traction resulting on the fault in Fig. 11 caused
by the application of a point force in the x, direction at the observer at F,. The result shown is
the 10-Hz spectral component, evaluated on a square grid of 900 points on the fault.
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distance, the traction should be of the form of Eq. (46), and lines of equal
travel time should be lines of equal phase. Consequently, we expect the
lines of equal phase to form circles concentric about F;, which is what Fig,
12 shows. Slip s is of the form of Eq. (45), with lines of equal phase being
lines of equal rupture time (Fig. 13). The dot product of these two
functions, i.e., the integrand of Eq. (14) is shown in Fig. 13. As promised in
Section II.C.1 for an observer in the forward direction, the integrand is
smoother than either s or T. It is well sampled by the 30 x 30 grid, and

S—
0.5 =
Xo (km) 0.0
~0.5%
-0.5 0.0 0.5
X| (km)
(b)

F1G. 13. (a) Real part of the 10-Hz component of the slip spectrum, shown as a function of
position on the fault. The rupture front is a line that advances at 3.0 km/sec left to right. (b)
Real part of the product of the function shown in (a) with the traction function of Fig. 12. This
scalar function is integrated over the fault surface to obtain the 10-Hz component of the
ground-motion spectrum at F;. The functions in (a) and (b) are both evaluated on a square
grid of 900 points, which is sufficiently dense to represent sT accurately.
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consequently it can be integrated accurately by the midpoint rule. If we
drop the rupture velocity to 1.0 km/sec, both s and s + T become consider-
ably more oscillatory, and the 30 X 30 grid no longer provides an adequate
sampling of s+ T (Fig. 14). The sparse sampling leads to an inaccurate
quadrature result. In the time domain seismograms, these numerical inaccu-
racies are manifested as individual pulses from each of the point sources.
These inaccuracies are greater for observers in the backward direction than
for those in the forward direction (Fig. 15). As mentioned earlier, the
numerical errors associated with point-source summations first become

)
i

i

20.5 0.0 0.5

! ”i

%p (km) 0.0

(b)

F1G. 14. (a) The same as panel (a) in Fig. 13 but for a 1.0 km/sec rupture velocity. Note
that the spatial wavelength of the function is much shorter and that it is undersampled by the
900 point grid. (b) The real part of the product of the function shown in (a) with the traction
function of Fig. 12, This product is undersampled solely because of the poor sampling of the
slip function.
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e
-,

005 cm/sec
0.1 cm/sec

0.0 0.5 " 1.0 .
Time (sec) Time (sec)
(a) (b)

F1G. 15. Particle velocity in the x; direction at observer locations B (a) and F, (b),
calculated by point-source summation in the frequency domain. These seismograms are
unfiltered and are calculated in the 0-63 Hz band. Seismograms in the upper row are
calculated for a square grid of 900 point sources on the fault; those in the lower row are for a
grid of 100 point sources. The effect of discrete point sources is much more apparent in the
backward direction (observer at B, Fig. 11) than in the forward direction (F,).

evident at high frequencies. At low frequencies, for which the integrands
have long spatial wavelengths, the point source summation can be quite
accurate, as can be seen for the flatness of the zero levels in the seismo-
grams in Fig. 15.

2. Adaptive Integration

The inaccuracies of a point-source summation generally result from the
undersampling of s. In Fig. 12 it is clear that the grid of 900 points is quite
adequate for sampling T at 10 Hz regardless of the rupture velocity.
Although it may be necessary to calculate s and s * T on a much denser grid
to assure an accurate result, values of T on an arbitrarily dense grid can be
obtained by bilinear interpolation between the sample points shown in Fig.
12. Consider momentarily an example calculation concocted to exacerbate
the problems of point-source summation. We again use a Haskell model in
a whole space, but we boost the medium velocities to a = 7.0 km/sec,
B = 4.0 km/sec, and p = 2.8 gm/cm’. We drop the rupture velocity to 0.6
km/sec and shorten the rise time to 0.01 sec. Seismograms calculated in the
0-10 Hz band for observers at F,, N;, and B (Fig. 11) are shown in Fig. 16.
The discreteness of the 16 X 16 grid of point sources is apparent at all
azimuths but especially in the backward direction. If the adaptive sampling
rules, Egs. (64) and (65), are used with m = n =6, T is calculated on a
5 X 5 grid and s on a 6 X 6 grid at the lowest frequencies. At 10 Hz T is
calculated on a 16 X 16 grid, and s is calculated on a 104 X 104 grid. By
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F1G. 16. The x; component of velocity in the 0-10-Hz band for observers at F;, N;, and B
(Fig. 11) for a 0.6 km/sec rupture velocity. The left column consists of seismograms calculated
by point-source summation of a grid of 16 X 16 sources. The seismograms in the right column
result from summations in which the number of grid points was adjusted for each frequency to
ensure 6 grid points per wavelength. The traction function was sampled on a 5 X 5 grid at the
lowest frequency and on a 16 X 16 grid at the highest frequency. The slip function was
sampled on a 6 X 6 grid at the lowest frequency and a 104 X 104 grid at the highest
frequency, Such dense sampling of s was necessitated by the very low rupture velocity.

using an adaptive grid, a much more accurate answer is obtained at high
frequencies, compared to a point-source summation, and T is evaluated
~ 50% fewer times. Because the adaptive technique attempts to distribute
errors equally over the entire frequency band, at low frequencies the
adaptive technique is less accurate than the point-source summation in this
case. This feature can be seen by examining the seismograms for the
observer at N, after 2 sec in Fig. 16.

3. A Haskell Model and Far-Field Green’s Functions

In Section II.C.1 we used far-field ray theory Green’s functions with
kinematic rupture models to obtain high-frequency seismograms in the
near-source region of a fault. We now show an example of such a calcula-
tion for an observer at N, (Fig. 11). The observer at N, is well within one
source dimension of the fault. In this example we return to the original test
problem except that the rise time is 0.1 sec. Figure 17 compares the
isochrone integration with a frequency-domain point-source summation
using only the R~! terms (discarding the R™> and R™* terms) for a
dislocation in a whole space [Aki and Richards, 1980, Eq. (4.30)]. The
isochrone-integration seismogram is unfiltered, and the point-source sum-
mation seismogram is bandpass filtered from 0 to 30 Hz using a zero
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0.05
cm/sec | B J

0 I 2
Time (sec)

F1G. 17. Demonstration that the isochrone integration technique yields the exact result for
far-field Green’s functions in the near-source region of a fault. The three columns contain
seismograms for the x;, x,, and x; components of velocity at observer N, (Fig. 11). The
upper trace of each pair is the isochrone integration result obtained directly in the time
domain. The lower trace of each pair is the result obtained by frequency domain summation of
a 30 X 30 grid of point sources (far-field terms only). The lower traces have been filtered by a
filter that is flat in the 0-20-Hz band and has a cosine-squared rolloff in the 20-30-Hz band.
Only the R™! radiation terms for a point dislocation have been used in the lower traces.

phase-shift filter having a cosine-squared (cos?) taper from 20 to 30 Hz.
The two results are essentially identical except for minor differences caused
by the filtering of the point-source summation result. In this example the
magnitude of the neglected R~2 and R™* terms is comparable to that of
the R term.

B. MORE COMPLICATED SOURCES IN A VERTICALLY
INHOMOGENEOUS MEDIUM

1. Comparisons Between Ray Theory and Exact Seismograms

Because the isochrone integration method using ray theory can be so
much faster computationally than methods using complete Green’s func-
tions, it is worthwhile to investigate its performance in situations more
realistic than a Haskell model in a whole space. Bernard and Madariaga
(1984) have compared ray theory seismograms to synthetic seismograms
calculated by Bouchon (1982) to simulate the Gilroy 6 recording of the
1979 Coyote Lake earthquake (Fig. 18). Bouchon’s synthetics were calcu-
lated by a point-source summation of complete Green’s functions for the
layered medium. While the ray theory result lacks the near-field wave that
causes the long-period ramp before the arrival of the S wave from the
origin, the far-field term reproduces the 2.5-sec-long main pulse surprisingly
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EPICENTER GILROY 6
1.75 kml ap By P
0.25 km i== . I
f I l
7-5 k QZ’BZa P2
0.5 km ¢ J

2 km 12 km

FAR-FIELD TERMS

{b)

F1G. 18. Comparison of isochrone integration seismograms and complete seismograms for
a simulation of the 1979 Coyote Lake earthquake. (a) Test geometry. A vertical section of the
earth containing the fault is shown. The earth model consists of a uniform layer overlying a
uniform half-space containing the fault, where O is the hypocenter. The rupture front is an
expanding circle limited by the edges of the rectangular fault. I;, I, I3, and I, are critical
points where isochrones touch the edges of the fault, thus radiating high-frequency pulses.
Displacement, perpendicular to the fault, is calculated at station Gilroy 6. (b) The upper trace
(asymptotic method) is the result of isochrone integration (far-field terms). The lower trace
[Bouchon’s method (1982)] is the result of point-source summation of complete Green’s
functions, including all near-field terms. Here, 0, 1, 2, and 4 show the locations of S pulses
associated with the hypocenter and critical points.

well. Its higher frequency features correlate with those in the complete
seismogram, as they should.

In the next example, we show what may be one of the most significant
limitations on the use of ray theory for extended-source calculations. Ray
theory does not correctly predict the phase shifts, diffracted P wave, and
whispering gallery mode that in some cases accompany an SV wave
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F1G. 19. (a) Test geometry. A circular fault 1 km in diameter with its center at a depth of 4
km lies in the x-z plane. Observers at A, B, and C are located in the x—y plane (free surface)
at an azimuth 60° off strike, at epicentral distances of 2.0, 5.0, and 10.0 km, respectively.
Observer D is at an epicentral distance of 5.0 km along strike. (b) The earth velocity structure
consists of two gradient zones overlying a uniform half-space (Table I). (c) The slip model is
pure strike-slip and is circularly symmetric about the hypocenter. Rupture time is shown by
(—), healing time (- — -), and slip rate (——). Note that the fault slips for 0.32 sec at its
center and 0.01 sec at its periphery.

incident at the free surface (Spudich and Frazer, 1984). The test situation,
Fig. 19, largely mimics that of Campillo and Bouchon (1983). Rupture
initiates at a 4-km depth and expands uniformly to fill a circle of 0.5-km
radius. Healing then initiates at the periphery and propagates inward to the
origin. In our case the slip-rate time function is a rectangle (see Section
II.A) rather than the Kostrov function used by Campillo and Bouchon. The
slip-rate, rupture time, and healing time on the crack as a function of radius
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TABLE I. EARTH MODEL PARAMETERS?

Depth (kmy) a(km /sec) B(km/sec) p(g/cm’)
0.0 40 23 2.6
1.5 5.5 32 2.8
45 6.3 3.65 29
0 6.3 3.65 2.9

“4Linear interpolation is used to derive model parameters
for depths not given in this table.

Velocity {cm/sec)

L L 1 1 1 ]
1.5 2.0 2.5 30 35 40 1.0 1.5 20 25 30
Time (sec) Time (sec)

F1G. 20. Comparison of isochrone integration (ray theory, ----) and complete (—)
mograms for the test in Fig. 19, for observers at A (r = 2 km), B (r =5 km), C (r = 10
, and D (r = 5 km). All seismograms have been band pass filtered from 1-10 Hz using a
causal filter. The three components of ground velocity are shown for each observer. The P
es agree well at all observers, and S waves agree well at short distance (A) and where only
energy is present (D); S-wave discrepancies are apparent at B and C due to phase shifts,
diffracted SP wave, and a whispering gallery mode associated with SV waves incident at
free surface. These effects are not included in the ray theory resuit.
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are shown in Fig. 19. Slip everywhere on the fault is parallel to the x axis.
Our earth model is given in Table 1. Figure 20 shows the x, y, and z
components of ground velocity observed at A, B, C, and D in Fig. 19. The
dashed line is the ray theory result, and the solid line is the result obtained
using the adaptive integration method of Spudich (1981) and complete
Green’s functions calculated with the DWFE method of Olson et al. (1984).
All seismograms have been bandpass filtered from 1 to 10 Hz using a zero
phase-shift filter having a cosine (cos!) taper from 1 to 3 Hz and from 7 to
10 Hz. The ray theory result was obtained using about 1% of the computer
time required for the complete result. The two methods agree quite well at
A (2-km epicentral distance), showing that the near-field term is not
important in this case. The P waves match well at all epicentral distances,
but the S-wave match deteriorates at B and C due to the complexities
associated with SV at the free surface. A diffracted P wave, preceding the S
wave, can be seen at 3.2 sec in the y and z components at observer C.
These discrepancies are clearly associated with the SV wave because the ray
theory S wave at observer D, which is on an SV node, agrees well with the
complete synthetic.

These examples show that ray theory works very well when used within
its range of validity. Because the largest motions in earthquakes are
generally associated with S waves, future work in ray theory should con-
centrate upon finding a solution for the SV problems, which does not affect
the simplicity of the isochrone formalism.

2. Modeling Strong Motion Records from the 1979 Imperial
Valley Earthquake

In this section we discuss some of the numerical considerations involved
in a realistic extended-source calculation. The example we will use is from
the work of Archuleta (1984), who determined a faulting model consistent
with the data for the 1979 Imperial Valley earthquake using DWFE (Olson
et al., 1984) to calculate the Green’s functions and the adaptive method of
Spudich (1981) to evaluate the fault surface integral. We will not dwell on
the source parameters or the interpretation of the model, all of which are
found in Archuleta (1984).

The objective was to find a rupture model that predicted synthetic
seismograms consistent with the data. The data were the three-component
particle velocity records at 16 stations, all within 23 km of the Imperial
Valley fault. The medium had a well-determined P-wave velocity structure
and a reasonably well-determined S-wave velocity structure (see Table II).
The fault had a length of at least 35 km and a downdip width of 13 km.
Faulting at the surface was primarily right-lateral strike-slip with a minor
amount of dip-slip motion.
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TABLE II. ELASTIC PARAMETERS FOR THE IMPERIAL VALLEY?

Depth (km) a(km/sec) B(km /sec) p(g/cm’)

0.0 1.70 0.40 1.8
04 1.80 0.70 1.8
5.0 5.65 3.20 2.5
11.0 5.85 3.30 2.8
11.0 6.60 3.70 2.8
12.0 7.20 415 2.8

“Between any two successive depths linear interpolation
is used to determine intermediate values. A half-space exists
for depths greater than 12 km. Different elastic parameters
at the same depth indicate a discontinuity.

The basic numerical constraints on generation of the Green’s functions
using the DWFE method were determined by five parameters: the maxi-
mum length of time of the synthetics (¢,,,,), the maximum frequency of
interest ( f,,,,), the maximum distance between any observer and the most
distant point on the fault (7,,,), the maximum P-wave velocity in the
medium (a,,,), and the minimum shear-wave velocity in the medium
(B,,)- For the Imperial Valley data, Archuleta (1984) selected the follow-
ing values: 7, = 30 sec, f,.. = 1.0 Hz, r,, = 35 km, a_,, = 7.2 km/sec,
and B,_;, = 0.4 km/sec.

The first step of the problem is to obtain traction Green’s functions T
on a grid of points on the fault. This grid must be sufficiently dense to
allow accurate integration of § « T over the fault surface. As mentioned
earlier, the DWFE method obtains expansion coefficients U(z, ¢, k),

V(z;, ¢, k),...,T(z, ¢, k), i=1,...,N,, j=1,..., N, where N, is the
number of mesh points and N, is the number of time steps, by using a
finite-element technique to solve the time-domain form of Egs. (21) and
(22) for each wave number k. The DWFE method adjusts its mesh spacing
Az in depth to give 6 mesh points per shortest shear wavelength:

Az(z) = B(2)/(6fmax) (118a)

(118b)

z*

z, = Az(z;_y), z2=0, i=1,..., N,
=1

J

Because traction Green’s functions are ultimately calculated at the depths
(z,}, this variable spacing is completely consistent with the sampling
criterion of Eq. (64). For the Imperial Valley case, with a fault extending to
a 13-km depth, Green’s functions for depth z, with 1 <i <22 were
calculated and saved. A time step of about 0.015 sec was chosen to satisfy
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the Courant stability criterion for the finite-element calculation and to give
N, = 2048 for a 30-sec-long time series.
The maximum number of wave numbers is simply

N, =k ../Ak, (119)
where
Ko = 27 f g/ (0.9 in), (120)
and
Ak =2w/R_.., (121)
where
Rpax = (ot max + Tmax)/2- (122)

The quantity (0.98,;,) represents the minimum phase velocity of interest,
the velocity of the fundamental mode Rayleigh wave in the shallowest part
of the medium. If the time window of interest does not include such slowly
traveling waves, then the number of wave numbers can be reduced ap-
propriately. Here, R ,, represents the radius at which a reflecting boundary
must be placed such that reflected energy from this boundary does not
arrive within the time window [0, 7., ] being synthesized. Substituting the
values used for the Imperial Valley, we found N, = 348. In practice,
DWFE optimizes itself in the course of the computation so that this
number is the upper limit with the actual number of wave numbers being
less, especially if the fault surface does not penetrate into the lowest
velocity (8,,,) material.

The computation of U, V, W, P, S, and T and their Fourier transforma-
tion into the frequency domain required 3.5 hr of computation time (all
computation times will be those measured on a VAX11,/780 with a VMS
operating system). The components U, V, W, P, S, and T are saved as
functions of (z, k, w). The number of frequencies N, saved after trans-
forming to the frequency domain is simply f,.. /Af where Af = 1.0/¢_,..
Thus, only 31 frequencies, including zero frequency, are saved. The ad-
vantage of saving U, ..., T in the z, k, o domain is that they embody the
exact medium response. Green’s functions for any epicentral distance and
point-force orientation can be obtained from them by use of Eq. (19). The
disadvantage is the amount of storage, amounting to approximately 6NN, N,
complex words (about 1.5 million in this case).

The next step in the procedure is to calculate for all observers the
tractions T™(x, w; y;, 0), as in Eq. (15), where m is the point-force direction,
X is the position on the fault, and y, is the location of observer i. This is
accomplished by using Egs. (19) and (20) and by further differentiating the
displacements to get strains, from which are derived stresses and tractions.
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Fi1G. 21. Spacing of sample points x;- where T is sampled on the fault, and z, z,, ..., are

the depths at which U, V,..., T are obtained using DWFE. Horizontal spacing of sample
points varies with local S-wave velocity, which is a function of depth (Table II). Here, y; is the
location of observer i, and r is the cylindrical radius for which Eq. (19) must be evaluated to
obtain the traction at the indicated point.

Here, T is calculated on a variably spaced mesh of points on the fault, in
accordance with Eq. (64). For simplicity we assume the fault lies in the x—z
plane (Fig. 21), and we let x;; = x% + 2,2 be the i/ th traction sample point
on the fault. The grid depths used by DWFE in Eq. (118b) are {z;} and

Ax(z, f) = B(z)/6f, (123a)
X = Zl, Ax(zj_l,f), Zo=0. (123b)
j=1

This leads to a horizontal spacing of points on the fault that varies as a
function of frequency and depth. For each of the observers used by
Archuleta (1984), the evaluation of T (e.g., Fig. 22) for all x,; and all
frequencies took about 2 hr of CPU time, and storage of T required about
0.4 million complex words, which were saved for use with subsequent slip
models.

The slip rate function was specified using four parameters: strike-slip
rate amplitude, dip-slip rate amplitude, slip duration, and rupture time, on
a 182-point grid that was spaced equally every 2.5 km along-strike and
1.0-km downdip. Thus, each faulting model consisted of 728 independent
parameters. This grid of 182 points was not the same as the grid of
quadrature points {xsj} (Section 11.C.3.a). The sample spacing in both x
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DISTANCE ALONG STRIKE (km)

FI1G. 22. Real part of the x component of traction resulting on the Imperial fault from the
application of a point force at x = 24.9 km, y = —1.0 km, corresponding to Station E07 of
the El Centro array (Archuleta, 1984). The 0.51-Hz component of the traction spectrum is
shown. Because the point force is quite close to the fault, the traction peaks strongly nearest
the point force. The wavelength of the traction is smallest at zero depth, where the shear
velocity is minimum, and the wavelength increases with depth.

and z for the quadrature is given by Eq. (65). Using f = 0.5 Hz and m = 8,
on the shallowest part of the fault the rupture velocity might be 0.5 km/sec,
implying a 0.125-km spacing for quadrature points. Deeper on the fault,
where the rupture velocity might be 3.0 km/sec, the quadrature point
spacing is about 0.75 km. Because quadrature points almost never coincide
with the 182 points upon which the rupture model parameters are specified,
the four rupture parameters are obtained at quadrature points by bilinear
interpolation. The spectrum of the slip rate, §(x,, ) is easily calculated
from the four interpolated parameters. The integration of the product of the
Green’s function and slip model (5 * T) over the fault for 31 frequencies
required 15 min of computation time per observer. Because it is generally
insufficient to determine the validity of a particular rupture model by
looking at the resulting synthetic seismograms at only one observer, syn-
thetic seismograms were calculated at a minimum of six observers for each
rupture model. Thus, each model took about 1.5 hr of CPU time.

While the initial computation time needed to obtain U, V, W, P, S, and
T can be large, in fact, the inverse Bessel transform for each observer
required nearly the same amount of time. The actual computation time for
doing the integration and inverse Fourier transform to compute a particle
velocity at a given observer is rather small by comparison. However, in the
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trial-and-error procedure of trying to find agreement between the synthetics
and the data, it may take a large number (~ 300 in the case of the Imperial
Valley earthquake) of trial rupture models before a satisfactory fit is found.
In this case, the total computation time for the integration over the fault
plane becomes the costly part of the problem. Although the overall compu-
tation time is nontrivial, synthetics, which incorporate the vertical hetero-

323°

eos J\J\/\/\/\x
0.5
©
& o SYN
£ = — AN
-0.5
=08 W NiNaV 22 %
SYN H
—_— N\ —————
£07
0.S —-\/"\/'\/\/\/
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Eos \J\/\/\/\/\f WM W\/VW
SYN
— N T —_— N UNN\—
L L 1 J L — L J L L L J
10 20 30 O 10 20 30 O 10 20 30
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F16. 23. Comparison of synthetic particle velocities (lower trace of each pair) with the data
for Stations E05, E06, E07, and E08. Each column represents a different component of motion.
The 323° and the 53° are the horizontal components with positive motion directed along the
azimuth, measured clockwise from north. The data and synthetics have been filtered to 0.5 Hz.
(From Archuleta, 1984; published by the American Geophysical Union.)
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geneity of the velocity structure and the spatial and temporal finiteness of
the faulting, can be computed that are in agreement with the data (Fig. 23).
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