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Abstract

New methods of site-specific ground motion prediction in the time and frequency domains are presented.
A large earthquake is simulated as a composite (linear combination) of observed small earthquakes (subevents)
assuming Aki-Brune functional models of the source time functions (spectra). Source models incorporate basic
scaling relations between source and spectral parameters. Ground motion predictions are consistent with the
entire observed seismic spectrum from the lowest to the highest frequencies. These methods are designed to

s

Key words strong motions — composite earth- predicting the amplitude and phase of the parti-

quakes — synthetics — source spectra cle acceleration at all frequencies is an impos-

sible undertaking. Yet a meaningful ground

motion prediction must include the full band-

1. Introduction width of seismic waves. Is a complete time his-

tory necessary? Is it possible to obtain mean-

How does one predict ground motion for a ingful ground motion predictions if we com-
specific site from a future earthquake? Short of pletely neglect phase information?

actually predicting an earthquake itself the pre- We study this fundamental problem of seis-
diction of the expected ground motion remains mology by developing new empirical methods
one of the most fundamental questions in seis- of ground motion prediction based on multiple

mology. This problem consists of two parts: a source models (fig. 1). The idea of many em-
description of the earthquake and a definition pirical Green’s functions methods (Hartzell,

of ground motion. 1978) is to utilize the observed small earth-

Any description of an earthquake has inher- quakes originating within the rupture area of
ent uncertainties. Nonetheless years of study of the simulated large earthquake as its sub-
past earthquakes provide gross constraints, e. g sources, representing heterogeneities, asperi-
the shape of the seismic spectrum, average rup- ties, etc. For the validity of this approach all
ture velocity, scaling relations between the subevents should have focal mechanisms simi-
seismic moment and the source size. lar to that of the simulated main event. Sup-

How is ground motion defined? The task of pose that we have a good coverage of the an-
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Fig. 1. Schematic diagram of the ground motion prediction with multiple empirical Green’s functions.
Observed NS-components of ground acceleration from 5 subevents (top left) and from the main shock (top

right) are shown.

ticipated main event rupture area by observed
subevents. Then we are trying to simulate the
large earthquake as a subsequent rupture of
properly scaled and lagged subevents. Such
procedure will account for the source-receiver
geometry by virtue of the initial choice of only
those subevents, which are co-located with the
main event. Directivity effects can be taken
into consideration by determining rupture

times of subevents according to both their po-
sition on the fault with respect to the main
event hypocenter and the azimuth between the
site and the direction of rupture propagation.

The important features of our approach are
the following:

— it is completely empirical;
— it allows one to use all the available
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records at a site. Thus a prediction is not bi-
ased by a single record, and different possible
source-receiver paths are taken into account;

— it requires the following input parameters
for the simulated large event: i) target seismic
moment M,; ii) location of the seismogenic
zone, in particular its size Ry; iii) direction of
rupture propagation; iv) location of the
hypocenter (not required for the spectral pre-
diction method).

There are no other free parameters.

— By applying the method to all three com-
ponents of ground motion we can predict si-
multaneously the three components of ground
motion at a site.

— It exploits the established connection of
the basic scaling relations (Aki, 1967; Brune,
1970; Kanamori and Anderson, 1975) between
large and small earthquakes to parameters of
the seismic source spectrum. This results in a
flexibility of the method with respect to differ-
ent observed seismic parameters’ scaling and
spectral falloffs.

— It produces a ground motion prediction in
the whole frequency range avoiding deficiency
in spectral amplitudes near the target corner
frequency.

The paper essentially consists of two parts
conventionally called «Time-Series Predictions
and «Spectral Prediction». The principal differ-
ence between them is that the time-domain ap-
proach requires both the amplitude and phase
information to produce time-series predictions,
while the spectral approach uses only ampli-
tude spectra of subevents to predict the ampli-
tude spectrum of the target earthquake. On the
other hand the time-domain additions of
subevents can be equally well performed in the
spectral domain by considering simultaneously
the amplitude and phase spectra. At the same
time our spectral methods are capable of pro-
ducing time-series by associating either sub-
events phase information or random phase
with the amplitude spectral prediction.

Thus the first part is devoted to methods of
adding subevents in the time domain. Any such
method requires knowledge (or determination)
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of rupture times of subevents. In particular, we
show that it is possible to perturb rupture ve-
locity in a multiple source model consisting of
identical constant stress drop subevents in or-
der to produce an arbitrary target source. The
idea of adjusting rupture times of identical
subevents was suggested by Wennerberg
(1990). However he used a non-causal
subevent-to-main event transfer function that
resulted in unrealistic negative rupture times
on the fault. By using both the amplitude and
the phase of the Brune’s source spectral model
(Dan et al., 1990) we show how the model de-
velops only positive rupture times. As a by-
product we find a finite rupture velocity earth-
quake model with a Brune spectrum.

The second part is the investigation into
theoretical principles of ground motion predic-
tion and the novel methodology of construction
of source amplitude spectra based on scaling
considerations. A new method of empirical
spectral prediction, which uses only observed
amplitude spectra of small earthquakes co-lo-
cated with the predicted large earthquake, is
developed. This new method does not require
the knowledge of details of seismic rupture and
is theoretically capable of predicting ground
motion spectra in the whole frequency range of
analyzed subevents.

The third part shows applications of these
ground motion prediction algorithms to data.
All of this is followed by a discussion of the
methods and their applicability to simulating
ground motion from large earthquakes.

L.1. Empirical Green’s functions methods

The general concept of the Empirical
Green’s Functions Method (EGFM) is to ac-
count for realistic path and site effects by using
observed records of the so-called subevents —
small earthquakes located within the rupture
area of the simulated large earthquake (main
event) (fig. 1). The idea of EGFM (Hartzell,
1978; Wu, 1978) was extensively used for syn-
thesizing strong ground motions as well as for
inverting for source properties of seismic rup-
tures (Joyner and Boore, 1988; Aki and
Irikura, 1991).
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The major and the most difficult part of this
approach is deciding how to sum the
subevents’ records to obtain the prediction
(Hartzell, 1978; Irikura, 1983; Joyner and
Boore, 1986; Heaton and Hartzell, 1989). We
study this problem in both the time and the fre-
quency domains by providing general methods
of adding arbitrary sets of observations for
site-specific ground motion simulations of sce-
nario earthquakes. A different EGFM approach
based on a kinematic modeling of the seismic
rupture process (Hutchings, 1994) lies beyond
the scope of this paper.

Often, EGFM considers a single observed
subevent in order to simulate the ground mo-
tions for an anticipated main event. This
subevent is replicated many times to obtain a
distribution of similar subevents covering the
expected rupture area of the main event. Using
only one initial record for EGFM allows the
predictions to have a strong dependence on
characteristics of the input record. Conse-
quently, there is a large variation in predictions
simply due to the choice of a subevent (Dan et
al., 1990).

In order to match the seismic radiation
for both lowest and highest frequencies a sub-
event’s waveform might be appropriately fil-
tered in the time or frequency domains
(Irikura, 1983; Boatwright, 1988; Heaton and
Hartzell, 1989), or it might be specifically
scaled and replicated (Joyner and Boore,
1986). Also, a satisfactory fit in the whole fre-
quency range can be achieved by choosing an
appropriate probability distribution of time de-
lays between these identical subevents (Wen-
nerberg, 1990). Another approach is to use
EGFM to predict ground motions in a limited
frequency range, say, above a certain fre-
quency (Heaton and Hartzell, 1989) and then
combine the results with a deterministic mod-
eling at low frequencies (Sommerville, 1993).

Joyner and Boore (1988) were the first to
notice another major problem. The common
methods that provide a satisfactory simultane-
ous fit to the lowest and highest frequencies of
the target spectrum (Irikura, 1983; Joyner and
Boore, 1986; Boatwright, 1988) are all based
on a uniform distribution of rupture times of
subevents, i.e., a constant rupture velocity over

the fault. However this natural assumption
leads to a significant underestimation of the
main event’s spectrum in the vicinity of the
target corner frequency. This problem can not
be overcome by allowing for different size
subevents. In fig. 2a we show simulations of
the target Brune’s spectrum with fy =1 Hz by a
fractal distribution of subevents with corner
frequencies between 5 Hz and 25 Hz. The un-
derestimation of the target spectrum in the
vicinity of the corner frequency is a common
feature of both Boatwright’s and Joyner-
Boore’s predictions. This deficit is especially
striking when we consider the total kinetic en-
ergy. To see this we plot the power spectra of
the Brune’s velocity pulse and the correspond-
ing simulations from fig. 2a. The Joyner-Boore
prediction accounts for only 36% of the target
energy; while Boatwright’s prediction accounts
for only 32% of the energy (fig. 2b).

1.2. Source time functions and spectra

Throughout this paper we use a functional
description of the S-wave radiation that was
suggested and verified against observations
and physical models in pioneering works of
K. Aki and J. Brune (Aki, 1967; Brune, 1970,
1971). The @7 spectral model with three pa-
rameters: M, — the seismic moment of the
event, @, — corner frequency (associated with
the event’s linear dimension and duration), and
v - high-frequency decay rate, has been widely
used to study radiation of seismic sources
(Joyner and Boore, 1988; Aki and Irikura,
1991). Different functional models of seismic
sources (e.g., Randall, 1973) as well as the P-
wave radiation can be treated along the same
lines.

According to the classic w-squared model
(Aki, 1967; Brune, 1970, 1971), it is assumed
that the shape of displacement amplitude spec-
trum |S ()| of a seismic event is

M
IS(o)| = C;——— (1.1)
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Fig. 2a,b. Simulation of the Brune’s spectrum (fy = 1 Hz) by a fractal distribution of subevents (D = 2,
Jmin = 5 Hz, fo, = 25 Hz) with uniformly distributed rupture times. a) Normalized displacement amplitude
spectra. Aki-Brune spectrum (1.1) is a solid line; simulation by our generalization of the Joyner-Boore method

(Boatwright, 1988) is a dashed line. b) Normalized velocity power spectra. Note that the uniform distribution
of rupture times of subevents produces a local minimum of energy at the target corner frequency for both gen-
eralized Joyner-Boore (dotted line) and Boatwright (dashed line) methods. However the @ spectral model
(1.5) implies that the source energy (solid line) should be peaked at the corner frequency f;.

where @ = 2771 is frequency, and Cs is a con- first-order discontinuity of its derivative, con-
stant independent of M, and @y. This ampli- trols the high-frequency behavior of the Aki-
tude spectrum corresponds to the source time Brune’s spectrum (1.1) which decays as w2

function, known as «Brune’s pulse» (Brune, (Randall, 1973).
1970): If we consider a more general source time-
. function
S0 = 2w C, Myt H)  (1.2)
where H (1) is the Heavyside function. The be- S@) = —\/ZL CMyoh 17~ e H(f) (1.3)
havior of the Brune’s pulse at 1 = 0, ie., the I'(y=1 ‘
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(I' (y—1) is the Gamma-function: I"(y—1) =
(y—2)! for integer values of 7), then its Fourier
transform has the form:

M (14)
.o\
1+i—
(05

(for y= 2 see Dan et al. (1990)); and the corre-
sponding S-wave amplitude spectrum is a fa-
miliar @~ "-model

S(w) = C,

in a form considered, for example, by Chael
and Kromer (1988).

IS(w)| = C (1.5)

1.3. Multiple source models

It is well known that simple fault models
(point-source, double-couple, Haskell-type rup-
ture, etc.) produce accelerograms, that contra-
dict the observed high-frequency complexity of
radiated acceleration. There are different ways
of introducing heterogeneity into the source
models, thus enhancing radiated high frequen-
cies. One of the most promising and widely
used methods is to represent a heterogeneous
rupture (main event) as a multiple source,
i.e., as a composite of discrete subsources
(subevents). These multiple source earthquake
models include various self-similar models of
complex earthquake rupture (Boatwright,
1988), the specific barrier model of Papageor-
giou and Aki (1983), as well as some empirical
Green’s functions methods (Joyner and Boore,
1988). In a general sense every finite-element
(or any other discrete) model of a seismic rup-
ture can be viewed as a multiple source model,
although often the term «composite earth-
quake» is reserved for the specific case when
each subevent is a small earthquake by itself
(Frankel, 1991; Zeng et al., 1994). Such com-
posite earthquake models have inherent limita-
tions (Tumarkin et al., 1994).

At the same time site-specific predictions of
ground motions should utilize all the available
information contained in observations of earth-
quakes at the particular site. Uncertainties in
the predicted path and site effects can.be re-
duced by examining data from past earth-
quakes that originate within the rupture area of
the anticipated large earthquake (e.g., Joyner
and Boore, 1988). If more subevents are simul-
taneously included as a basis for a prediction,
the results are less dependent on characteristics
unique to a single seismic record.

Suppose that we have observations of N
earthquakes (subevents) having the same focal
mechanism and all located within the rupture
area of an anticipated large earthquake. The
most natural and simple idea is to simulate the
radiation from the large earthquake as a linear
combination of subsources — scaled and lagged
small earthquakes (Heaton and Hartzell, 1989).
The source time function Sy (f) of the simulated
earthquake is represented as a linear combina-
tion of source time functions S;(#) of sub-
events:

Sty = 0,8, (1= 7)) + 025, (t— ) +... +Oy Syt — Ty)
(1.6)

where 7; denotes the rupture time of the jth
subevent, and o; are scaling coefficients for the
jth source S; (¢). Allowing for o; to be free pa-
rameters of the model means that we are per-
mitting arbitrary changes of stress drops of
subevents in order to fit the target earthquake
(variable stress drop model). Similarly varia-
tions of 7; result in a variable rupture velocity
over the fault plane.

Assuming that the source time functions Sy,
Sy, ..., Sy have the functional form (1.3), we
can rewrite (1.6) as:

—1 -
My~ e ™ H(t) ~
= oMy 0"(t—1)" e VH({I— 1) +
OMpo(t—1,) e PHE-T,) +.. .+
Oy Moy @, (¢ — Ty)" ™' e~ WH(t — 1)

1.7
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where My, My, ..., Myy are the seismic mo-
ments of the target event and subevents; Wy,
@y, ..., Oy are their corner frequencies; and yis
the common spectral falloff.

Parameters o; and 7; can be determined as
solutions of a non-linear least-squares problem
(1.7). It is possible to consider a minimization
problem with constraints on values of o; and T;
forcing them to lie within the physical limits
on stress drops and rupture velocity. If the rup-
ture times 7; of subevents are postulated (e. 8.
by assuming a constant rupture velocity), then
the coefficients o; can be found as a solution of
a linear least squares problem. However the
problem of determining the best fitting rupture
times 7; is severely non-linear. Nonetheless
there is a way of explicitly resolving for 7; in
the framework of the approach proposed by
Wennerberg (1990), which is developed in the
next section. The relation (1.7) is satisfied by
varying only 7; while keeping 0; = const. This
approach corresponds to a constant stress drop
model with a variable rupture velocity.

If the coefficients 0; and 7; are found from
the relation (1.7), the ground motion Uy (®
from the large earthquake at any site can be
approximated as the linear combination of
observed ground motions U; (1) from the
subevents:

l]()(l‘)z G] U] (t" 7:1) + O-2U2(t— Tz) +.. '+GNUN(I— TN)
(1.8)

which follows from (1.6) and the representa-
tion theorem for seismic sources (Aki and
Richards, 1980).

1.4. Directivity

Radiation from extended seismic sources
often has a distinct asymmetric structure. At
the same distance from the seismogenic area in
the direction of the rupture propagation higher
amplitudes are accompanied by shorter dura-
tions, while in the back-azimuth lower ampli-
tudes and long durations are observed. This ef-
fect was discovered by Benioff (1955) and was
named «directivity» by Ben-Menahem (1961).
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Directivity is closely related to the Doppler ef-
fect (Douglas et al., 1988). Earlier theoretical
and laboratory studies (Archuleta and Brune,
1975; Boore and Joyner, 1978) as well as ob-
servations of moderate and large earthquakes
(e.g., Boatwright and Boore, 1982; Kanamori
et al., 1992) emphasize the importance of ac-
counting for rupture directivity in ground mo-
tion prediction algorithms.

The apparent S-wave spectrum Sq(m) of a
seismic source moving with constant speed v
observed at a site located at an angle 6 from
the direction of rupture is given by:

So() = S(%), (1.9)

where D is the directivity factor:

D= 1

-2 cos O

(Aki and Richards, 1980; Douglas et al., 1988;
Joyner, 1991). Thus the directivity factor D is
controlled by both the azimuth 6 and the Mach
number M = v/f3, where B is the shear wave
velocity. Directivity effects increase with an
increase of the Mach number M.

Assuming the Aki-Brune spectral source
model the relation (1.9) is equivalent to the
shift of the apparent source corner frequency
Mg

(O
Dpg=

1-2 cos O

(1.10)

Assuming that v = 0.85 8 (Kostrov, 1964; see
also below), we find that the apparent source
corner frequency is greatly augmented in the
forward direction — Woe=6.67 @,, 0=0; un-
changed in the direction perpendicular to the
fault — wpe= @w,, O = 90°, and reduced by
almost a factor of 2 in the back azimuth —
®oe=0.54 w,, 6= 180°. This angular variation
of corner frequency explains the focusing of
seismic energy in the direction of rupture prop-
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agation. Consequently directivity results in a
dramatic azimuthal dependence of the shape of
ground motion spectrum and the total radiated
energy for unilateral seismic ruptures (Boore
and Joyner, 1978; Boatwright and Boore,
1982; Kanamori et al., 1992). It is worth not-
ing that heterogeneous ruptures (and thus mul-
tiple source models) may have even stronger
directivity effects than uniform ruptures (Boore
and Joyner, 1978; Joyner, 1991).

2. Time-series prediction

First we consider an elegant, though partic-
ular, approach to solution of the problem (1.6),
initiated by Wennerberg (1990). The Brune’s
source time function (1.2) is approximated by
adjusting rupture times but not the stress drops
of subevents. The general case (1.3) is treated
analogously, but explicit expressions for the
rupture velocity (see below) can be obtained
only for particular values of 7, such as y= 3.

The final result is an algorithm for time-
series prediction that allows for an arbitrary
number of observed empirical Green’s func-
tions.

2.1. Methods based on an appropriate choice
of time delays between subevents

A number of studies (Irikura, 1983; Joyner
and Boore, 1986; Boatwright, 1988; Heaton
and Hartzell, 1989) proposed methods for
adding identical subevents with uniformly dis-
tributed rupture times. These methods suc-
ceeded in matching both the low- and high-
frequency radiation from simulated -earth-
quakes. At the same time Joyner and Boore
(1986, 1988) found that their procedure re-
sulted in a deficit of energy in the intermediate
frequency range of the simulated spectrum (es-
pecially, in the vicinity of the corner frequency
w, of the main event). This fact is an inherent
feature of all methods assuming a uniform dis-
tribution of rupture times of subevents, ie., a
constant rupture velocity (Joyner and Boore,
1988) (fig. 2a,b). The underestimation of the
energy poses the problem of how to lag small

earthquakes, other than uniformly distributing
their rupture times, in order to simulate radia-
tion from a large earthquake for the whole fre-
quency range.

The importance of an adequate fit to the tar-
get spectrum in the vicinity of the corner fre-
quency @ is driven by both seismological and
engineering applications of EGFM. The spec-
tral corner frequency @, acts as a resonant fre-
quency of the source energy since the velocity
amplitude spectrum of a seismic source is
peaked at @, for the common ®-squared
model (Aki, 1967; Brune, 1970, 1971). There-
fore any misfit to the target spectrum in the
vicinity of its corner frequency severely affects
the total energy as seen in fig. 2b.

Wennerberg (1990) suggested an approach
to eliminate this deficit by determining an ap-
propriate distribution of rupture times of
subevents. Wennerberg assumed that the phase
spectrum between a small and a large earth-
quake is preserved. That assumption results in
a non-causal transfer function for small-to-
large earthquake scaling leading to unrealistic
negative - rupture times for one half of the
subevents (fig. 3).

In the following section we eliminate the
negative rupture times in the Wennerberg’s
method by using the complex form of the Aki-
Brune’s spectral model (1.4). Rather than treat-
ing the distribution of rupture times of
subevents as some transformation of a uni-
formly distributed random variable (Wenner-
berg, 1990), we consider rupture time as a
function of the position on the fault. This will
allow us to study the rupture front velocity in
this model and to propose non-instantaneous
kinematic source models with Brune-type
spectra.

2.2. Model

We start from a single small event S, (¢)
with seismic moment M,, and corner frequency
.. The simulated main event has a seismic
moment M, and corner frequency @,. The fault
plane of the large event is uniformly covered
by N subevents S; () = 0; S, (t — 7;) ordered ac-
cording to their distances R, to the hypocenter
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Fig. 3. Rupture time as a function of the position on the fault in Wennerberg’s (dotted line) and the causal
(eq- (2.7)) (solid line) models. We use the values f, = 1 Hz and f;, = 10 Hz.

of the main event. Each subevent starts radiat-
ing at a rupture time T,Jj =1, .., N. We denote
the seismic moment ratio by & & = My/M,,.
The constants o; represent the variation of seis-
mic moments (or stress drops) of subevents.
Using the condition that the cumulative seis-
mic moment of N subevents matches the target
seismic moment, Oy + 0, +.. . +0), = E.

We determine rupture times T;, such that the
resulting source time function

SO =0,5,(t- 1)+ 0,8, (t- Ty) +...+0yS, (t— Ty)
2.1

has the Brune’s functional form (1.2). The
Fourier transform of (2.1) is:

S(@) = {0177 + 0, "% 4. 10y ™S, (1) .
2.2)

We first consider a continuous rupture pro-
cess, i.e., a continuous distribution of rupture
times of subevents. For a unilaterally propagat-
ing rupture (fig. 4a) we introduce a normalized
coordinate p on the fault as the distance from
the hypocenter divided by the total length of
rupture R,. The time of rupture 7 will be a
function (7) p of the position on the fault; the
inverse function (p) 7 will determine the posi-
tion of rupture at any time 7.

Letg;=¢o; (p;— p;-1), where ;= pj_1), is
a normalized distance between consecutive
subevents. We notice that the expression inside
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Fig. 4a,b. a) Linear propagating rupture; b) circular expanding rupture.

the brackets in relation (2.2) represents an inte-
gral sum for the function G (p) exp (—iwT(p)).
The function 6(p) is the density of the seismic
moment release on the fault. Then by letting
N — oo, eq. (2.2) becomes

S(w)
S, ()

=£[ e (pup=

¢[ e spmpar.
(2.3)

If we denote the small-to-large earthquake
transfer function by P (w),

1700

P(w, y, 0)()6,) =

2.4

)

from (2.3) we conclude that P (w) is the
Fourier transform of the function & (p (¢))p’(¥),
thus & (p (1)p'(t) = P (t; g, @.)-

For the spectral model (1.4), accounting
both for the amplitude and the phase spectra,

1
P(CO, C()Q, a)oe) = —
;2

\2x (1+ wo)z '

1+i- 2
wOe

(2.5)
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The behavior of the transfer function (2.5)
at high frequencies controls the regularity of its
inverse Fourier transform. Since P (w) tends
to a finite limit at infinity, the function
G (p(®) P’ (¢) should have a S-like singularity
which can be assigned either to the seismic
moment release density & (p), or to the rupture
velocity p’ (1) (Madariaga, personal communi-
cation). Here we consider the latter case.

Wennerberg (1990) assumed that the phase
spectra of a large and a small earthquakes are
the same. Thus his transfer function was non-
causal, being proportional to the ratio of
Brune’s amplitude spectra:

(obtained in (Wennerberg, 1990) by a different
argument).
The inverse Fourier transform of (2.5) is

P(t, @y, wOe) =

Oe

(%)2(5(0 + 2000 00+ (@0- @) H)
2.6)

If all subevents have the same normaliza-
tion, 0; = §/N. Let & = c¢ (@, / ), where the
quantity cg describes the deviation from a con-
stant stress drop scaling. To simplify the fol-
lowing calculations we first normalize the orig-
inal subevent’s source time function S.(®) by
c¢ Then the function 6(p (1)) = 1, i.e., the seis-
mic moment is uniformly released over the
whole fault. Consequently in the case of the
linear rupture the normalized rupture velocity
P’ (1) is given by eq. (2.6). The normalized po-
sition p (#) on the fault at each time moment
can be obtained by integrating (2.6):

p(t7 0)09 wOe) =

, \? 0y \?
1—[1—(—0) +(1- 0) wor}e-wo’ H().
g, g,

2.7

By inverting the function p () from 2.7)
we can determine the rupture time f(p) for
each position p on the fault to satisfy the
small-to-large earthquake transfer function
P(w) in (2.4). We compare rupture times from
Wennerberg’s model and our model (2.7) in
fig. 3. We have used the values f, = 1 Hz and
Jo = 10 Hz for both models.

Thus Brune’s source with the corner fre-
quency @, can be simulated from any number
N of subevents with the corner frequency ,,
by the following steps:

1) uniformly distribute N subevents over
the linear fault plane (fig. 4a), i.e. determine
their normalized coordinates JoJ

2) determine their rupture times T by in-
verting (2.7) for 7; corresponding to given val-
ues of pj;

3) add subevents according to (2.1), where
0; = E/N.

Note that according to (2.7) the position p of
the subevent on the fault uniquely determines
its rupture time 7 (p). The quality of the fit in-
creases with an increase of the number of sum-
mands N since the rupture times in (2.7) were
obtained under the assumption that N = oo,

In fig. 5 we compare our simulations of the
Brune’s spectrum with f) = 1 Hz to the Wen-
nerberg’s original method (1990) for three val-
ues of the subevent’s corner frequency f;, = 3;
5; 10 Hz. The quality of fits is about the same
with slightly less variation in our predictions.
We see that this method is capable of produc-
ing a satisfactory prediction of spectral ampli-
tudes throughout the entire frequency range.

2.3. Circular rupture model

We can extend this approach from 1-D to
2-D for the particular case of a circular rupture
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Simulation of Brune’s spectrum with fo = 1 Hz by adding subevents with fe=3,5,10 Hz:
Wennerberg’s zero-phase distribution for rupture times of subevents
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Simulation of Brune’s spectrum with fp = 1 Hz by adding subevents with fe= 3,5,10 Hz:
Causal distribution for rupture times of subevents
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Fig. 5. Simulations of the Brune’s spectrum with fy = 1 Hz by Wennerberg’s (first row) and causal methods
(linear rupture case) (second row). We used three values of fy, = 3; 5; 10 Hz. The number N of subevents was

. \3
chosen to be equal to the seismic moment ratio N = ( Oe) .
@y

model. In an expanding circular rupture (fig. cal stress drop subevents (G(p (¢)) = 1) is given
4b), the elemental length dp in (2.3) becomes by:
an elemental annular area d(p?):

p(t’ @y, a)Oe) =

S(w (. -

S _ &) e 0spnpdp.  @8) ; :

Se(w) 0 o o ot

=All=| 1= — |+ 1-—| @t e H(t)
o o,
The normalized radial position of the rup-
ture front for a fault plane consisting of identi- (2.9)
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We determine the normalized rupture velocity
p’ (?) by differentiating (2.9):

P’ (ts Wy, a)Oe) =

2
(a%") (80)+ [200- 09 + (@0 o)1) H))
o) -

(2.10)

The rupture velocity v (r) can be obtained
from the normalized velocity p’ (7) using the
definition of the normalized coordinate p=rIR,
and Brune’s relation between the size of the
fault Ry, shear wave velocity f3, and the S-wave
corner frequency @,

(Brune, 1970, 1971). Thus

V() =Ryp (1) = ==L pr ().

2.34
(O

For a circular expanding rupture of sub-
events with corner frequency ,,

v(;) = i“ﬁ
O

2 .
(a%oe) (5(1) + [2 (@oe— @) + (@, — a)o)2t]e“"°’H(t))
-

o, \ 0, \*
H( - )J
wae wOe

In the limiting case of @, = oo, I.e., the size of

the subevent becoming infinitely small, we
find
].. 17 ,B(I)O te_w"’

V() =
VI=[1+ wyeo

H@. (211

From (2.11) we see that the rupture velocity
in this model (fig. 6) has the following fea-
tures:

— velocity is a monotonically decreasing
function of time (hypocentral distance);

— the maximum value of the rupture veloc-
ity is at 1= 0: Upey = 1. 1728~ 1. 658;

— the average value of the rupture front ve-
locity is 0.85 3:

Ve = [ v(o)p = [vopoa-

= 23 [ yrppar =
a)o 0

J234p e @bl
@o 70 4(1 ~[1 + wyt]e™™")

TZE*ZT
I1-[1+1]e®

_2.34ﬁr
===

with 7 = ot and numerically evaluating the
integral.

24. Fault composed of Boatwright’s
asperities

Boatwright (1988) proposed a composite
faulting model where subevents had two char-
acteristic linear dimensions, i.e., two corner
frequencies — @, related to the size of the
subevent, and @, related to the size of the
whole fault. Thus Boatwright’s asperity for the
constant stress drop seismic moment scaling
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Rupture Velocity: Circular Non-Instanianeous Rupture With Brune Spectrum
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Rupture Velocity: Circulor Non-Instantaneous Rupture With Brune Spectrum
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Fig. 6. Rupture velocity for the circular rupture model in the limit case @, = oo, (eq. (2.11)), as a function of
time (upper plot) and the position on the fault (lower plot). We plot rupture velocity normalized by the shear
wave velocity f.
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has a spectrum of the form:

1
B0 (Oy+ W) (0o, + i)

1, (@) o< (2.12)

Therefore, the asperity-to-large earthquake
transfer function in his case is

1+i-%

. 1 wOe
P(CI), (00, a)oe) =, (213)

4@

@y

The inverse Fourier transform of (2.13) is

)
P(L Wo, wOe) =

(60)+ (0p,- wp)e ‘H(1)) .
wOe .

(2.14)

As in the case of the Brune’s crack
subevent, eq. (2.14) gives us the normalized
rupture velocity p” (¢) for a linear fault consist-
ing of asperities. The normalized position p (¢)
on the fault at each time moment is obtained
by integrating (2.14):

Oe

p(t, @y, @y,) = [1 - (1 - %) e H(p. (2.15)

At the initial moment ¢ = 0 there is an in-
stantaneous rupture over a fraction of the fault
with length

Simulation of Brune’s source with corner
frequency @, using Boatwright’s asperities has
the following steps:

1) filter the observed small earthquake hav-
ing a corner frequency @, with the earth-
quake-to-asperity filter to produce the asperity-
type source spectrum (2.12) for subevents;

2) uniformly distribute N subevents over a
linear fault (fig. 3a), i.e., determine their nor-
malized coordinates Pi

~ 3) determine subevent rupture times by in-
verting (2.15) for 7; that correspond to given
values of pj;

1 I-p
h=-—1

| _

wOe

4) add subevents according to (2.1), where
o; = &IN.

This 1-D asperity model can be extended to
a circular rupture in a manner similar to that
given above. The position on the fault is:

Mo,

p, @y, ) = '\/1 - (1 - a)o) e H(f)

(2.16)

and the normalized rupture velocity p’ (¢) is:

20 5(0) + (@0, - @) )H(1)

@
o
2\/1—(1 - —O)e""""
wOe

If the asperity becomes infinitely small
@o. > @, then the rupture front velocity is:

P (t, ®y ) =

—w,t
1.17 Be H().
V1 —e

V() =
2.17)
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Analysis of the expression (2.17) provides
the following features of the rupture velocity in
this model:

— velocity is a monotonically decreasing
function of time (hypocentral distance);
— rupture velocity is singular at ¢ = 0; for

1.178
Voot

t<1l v@ =

2.5. Algorithm for time-series prediction

Suppose that at a given site we have obser-
vations U;(#), j = 1, .., N of N small earth-
quakes originating within the rupture area of
an anticipated large earthquake. We assume
that these earthquakes have the same focal
mechanism as the large event. If the observa-
tions cover the anticipated main event rupture
area, we try to simulate the large earthquake as
the sum of subevents generated from the prop-
erly scaled and lagged observed small earth-
quakes. Meanwhile we account for the source-
receiver geometry by choosing only those
subevents that are co-located with the main
event. We account for directivity effects by de-
termining rupture times of subevents according
to both their position on the fault with respect
to the main event hypocenter and their azimuth
between the site and the direction of rupture
propagation.

We can not apply the results of section 2.2.
directly to the observed set of small earth-
quakes because of three major difficulties: i)
the number of observations is usually small;
ii) they are distributed non-uniformly between
the hypocenter and the boundary of the antici-
pated rupture area; and iii) they have different
sizes. The following simple procedure allows
to overcome the first two problems. We choose
a new number of subevents N, that is assumed
to be sufficiently large to mimic a continuous
uniform distribution of subevents on the fault.
Testing on data shows that Ny = 100 works
quite well (see below). Then we uniformly dis-
tribute N, subevents on the fault, for example,
by assigning

J
Rj:']VO“Ro,

where R; is the distance between the hypocen-
ter of the main event and the j-th subevent, and
R, denotes the size of the main event. Now we
take the observed small earthquake closest to
the main event’s hypocenter. All subevents lo-
cated closer to the main event’s hypocenter
than this small earthquake are assumed to have
waveforms similar to that from this observed
small earthquake. Subevents positioned further
than the first observed small earthquake but
closer than the second from the origin small
earthquake are assumed to be similar to the lat-
ter one, etc. This procedure divides the whole
set of N, subevents into n; subevents similar to
the observed small earthquake closest to the
main event’s hypocenter, n, subevents similar
to the second closest observed earthquake, etc.
Thus after arranging the observed small earth-
quakes according to their distances to the main
event’s hypocenter, the numbers n;, n,, ..., ny
are proportional to the difference between
hypocentral distances of two successive small
earthquakes. There are many other possible
ways to take care of (i) and (ii), in particular
in a more accurate manner accounting for
the source-receiver geometry, and/or making
ny =ny, = .. = ny.

If subevents’ corner frequencies are suffi-
ciently large, we can use the limiting case
Wo, = o of (2.7) to determine their rupture
times. Note that in the case of a large number
of similar small subevents our considerations
show that

M,
MOe '

=z~

Alternatively, the coefficients 0; in the basic
relation (1.8) can be found as a solution to a
linear least squares problem (1.7). The result-
ing algorithm for time-series prediction, based

on this approach, has the following steps:

1) estimate the total rupture duration 7, by
dividing the fault size Ry by the average rup-
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ture velocity v (e.g., v = 0.85 B). Calculate the
target corner frequency w, = 27/T;

2) determine the apparent source corner
frequency @, at the site according to the di-
rectivity factor D:

@y
Dog=

1—200s0

(relation (1.10)).

3) calculate the seismic moment My (or es-
timate moments from the catalog magnitudes)
for each observed subevent;

4) determine the rupture time T; of the jth
subevent by solving (2.7) with W, = oo:

p=1- [ 1+ wge ’L'j] e 0%

where p; is the distance between the main
shock’s and subevent’s hypocenters normal-
ized by the size R, of the main fault plane
(e.g., pj = 1/);

5) determine coefficients 0;. This can be
done, for example, by adjusting subevents to a
common seismic moment My/N,, then

1 M,
0=~ 37
No My,

or, more naturally, use the same normalization
0; = 0 of the stress drop for all subevents:

M,

o= N
nle + n2M02 +. .. +nNMON

6) add observed subevents’ waveforms ac-
cording to (1.8).

We would like to emphasize once again that
this algorithm requires only the seismic mo-
ment of each subevents.

3. Spectral prediction

In this section we suggest an alternative ap-
proach to ground motion prediction. We con-

1707

sider only the amplitude spectra. Fourier am-
plitude spectrum is a measure of ground mo-
tion that (i) is related to both the earthquake
source and propagation/site effects; (ii) covers
the entire seismic bandwidth; (iii) directly ap-
plies to earthquake engineering; and (iv) is a
robust measure of the total ground motion. At
the same time phase spectra carry the most un-
certainty and variability, being influenced by
details of the rupture nucleation and propaga-
tion, size and location of asperities, etc.

First we consider the problem of normaliza-
tion of small earthquakes spectra in the empiri-
cal Green’s function method. Joyner and Boore
(1986) considered the case of a number of
identical subevents with uniformly distributed
rupture times (see also Heaton and Hartzell,
1989). We generalize their results for an arbi-
trary distribution of small earthquakes by using
a slightly different approach that is based on a
direct comparison of levels of the target and
added spectra at the lowest and the highest fre-
quencies. The goals of this part of the paper
are (i) to present a general method of normal-
ization of subevents’ amplitude spectra to
match both the low- and high-frequency levels
of the target spectrum, and (ii) to propose a
new method of adding subevents’ spectra to-
gether based on a new notion of partial coher-
ence.

By «spectral normalization» we mean mul-
tiplication of each spectrum by a constant that
depends only on the subevent’s size. This nor-
malization is equivalent to simply changing the
corresponding seismic moment (or stress drop).
Thus we do not change the shape of the spec-
trum by applying a filter in the spectral do-
main.

Recently, we have shown (Tumarkin ez al.,
1994), that no matter what the distribution of
subevents is, it is impossible to produce a tar-
get spectrum without prior scaling of events’
waveforms unless there is a relation Y= 6/2
between the source spectral falloff y and the
seismic moment’s scaling exponent & (such
that Myw?% = const for a seismic moment M,
and a corner frequency @,). Therefore in order
to match a target spectrum by adding a given
distribution of subevents we are left with an al-
ternative: 1) normalize subevents spectra with-
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out altering their distribution; and 2) normalize
subevents spectra and their distribution. The
latter possibility corresponds to Joyner and
Boore (1986).

In Joyner-Boore’s method 7] identical small
earthquakes are added together and their wave-
forms (i.e. spectra) scaled by a constant v. As-
suming a constant rupture velocity, the rupture
times of the subevents are uniformly dis-
tributed between O and the total rupture dura-
tion 7. This procedure results in a coherent
summation at lower frequencies (below the
corner frequency @, of the target spectrum)
and incoherent summation at higher frequen-
cies (above the common corner frequency @,
of subevents). Joyner and Boore (1986) estab-
lished the relations to be satisfied by 1 and v
in order for the spectrum to match the target
spectrum at the lowest and highest frequen-

cies:
) 2y ) 2y-48
n=(—°) ; v=(—° 3.1)
wOe wOe

In other words, the Joyner-Boore’s proce-
dure is the following: for a single subevent
with corner frequency at @, generate 1 sub-
events, similar to the given one, and multi-
ply each by v. Take these scaled subevents and
add them with uniformly distributed time-de-
lays.

We establish a necessary and sufficient con-
dition (inequality (3.5) below) for producing a
target spectrum using a given set of subevents
without changing their distribution (i.e., with-
out generating additional subevents). On the
other hand, it is always possible to fit the target
spectrum by appropriately normalizing the dis-
tribution and scaling the spectra. We discuss
the method in which each subevent’s wave-
form should be scaled according to the simu-
lated-to-subevent seismic moment ratio raised
to a power. The value of this power (1 — 27/0)
depends only on the source spectral falloff y
and the scaling of seismic moment 8. Thus
Joyner-Boore’s results are extended to an arbi-
trary distribution of sizes of subevents.

The summation of subevents amplitude
spectra is controlled by a frequency-dependent

partial coherence exponent. This novel ap-
proach allows to avoid the deficit of the result-
ing spectral prediction in the vicinity of the tar-
get corner frequency.

3.1. General relations

Again we consider N subevents with seis-
mic moments My, ..., Mgy and corner frequen-
cies @y, ..., Wy; My, and ®, are the seismic
moment and the corner frequency of the target
event; and Y is the common spectral falloff.

The following results are based on the seis-
mic moment scaling assumption:

Moewge = CM (32)

where Cj, is a constant independent of M,
@y.; and J is the seismic moment scaling expo-
nent. For the constant stress drop seismic mo-
ment scaling § = 3 (Kanamori and Anderson,
1975).

We now obtain general relations between
major characteristics of the model — seismic
moment scaling exponent 8, spectral falloff v,
and subevents corner frequency distribution —
that result from conditions of matching the tar-
get spectrum at lowest and highest frequencies
(cf., Tumarkin et al., 1994). Prior to adding
subevents, each spectrum is normalized by a
constant ©;. As pointed out earlier, this is
equivalent to multiplying the seismic moment
(or stress drop) by o;.

Let us now assume that at low frequencies
the subevent spectra add coherently. This is
equivalent to the natural assumption that the
seismic moment of the simulated event M, is
the sum of seismic moments of normalized
subevents. Using (3.2) we find:

M0=M0X+M()2"~+MON=

= Cy(0, 0+ 0, 07 .. +Oy W) .
(3.3)

Next consider summation of subevent spec-
tra for frequencies above the highest corner
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frequency of subevents. For the @ "-model
(1.5) the high-frequency source spectral level
at any frequency @ above the corner frequency
Wq, is CsMy, 0%, ™". Assuming that the high-
frequency energy of the main event is the inco-
herent sum of the energy of all subevents, we
find (cf, Joyner and Boore, 1986; Frankel,
1991; Tumarkin et al., 1994):

Ci M3 )/ % =
C3(0IM3, 03"+ O3ME, 0¥+ .. +ONMGy 030
Thus,

M; = Ch 0 (0?24 G224 Ao,
(3.4)

In the next section we establish a necessary
and sufficient condition for existence of multi-
pliers 0; satisfying the egs. (3.3) and (3.4).

3.2. A criterion for the possibility
of normalization

Quite unexpectedly, the general relations
(3.3)-3.4) imply a very strong condition
for existence of normalizing constants ;.
Roughly, this condition means that the total
moment of the given distribution of events is
large enough to satisfy an inequality for a new
functional on the distribution, introduced be-
low.

Let us consider the relation (3.3). Taking
squares of both sides of the eq. (3.3) and ap-
plying the Cauchy inequality

(Zx yj)2 < (fo) (zyjz)

. _ -8 _ — .
with x; = 0; ®™° and y; = 0}”, we get:

M; = Cy(0, 07+ 0, 05°. . . +0y P2 <
Ci (01074 0332+ . +ot¥ 2y .

(077 + 037 +. ..+

Comparing the last inequality with (3.3), we
conclude that

O+ 0+ 0 > 0.
(3.5)

This inequality (3.5) represents a necessary
and sufficient condition for the given distribu-
tion of subevents to be able to produce the
spectrum with the target corner frequency .
In particular, for N identical subevents with the
corner frequency @, relation (3.5) implies

that
2y
N> (2o}
(O

Thus (3.5) can be a used as a constraint for the
minimum number of summands (i.e., the maxi-
mum size of the cell) in the kinematic rupture
models using - empirical Green’s functions
(Hutchings, 1994). For 7 > 1 the inequality
(3.5) indicates that the total area of subevents
is greater than the area of the main event. For
the particular case of a constant stress drop
composite earthquake model this fact was ob-
served in (Tumarkin er al., 1994).

A violation of the condition (3.5) implies
that no matter how we normalized the sub-
events’ spectra, we would never be able to
match both the low- and high-frequency levels
of the target spectrum. On the other hand, if
(3.5) is satisfied as a strict inequality, there is a
wide choice of possible normalizing constants

9

In the case of equality in (3.5) (equality
in the Cauchy inequality) it follows that
X; = O; a)]/“s and y; = @;” should be propor-
tional. Therefore, the normalizing constants C;
are unique: o; = (wola)j)2”‘6.

It is worth noting that the condition 3.5)
does not depend on the seismic moment scal-
ing exponent & but only on the distribution of
subevents’ corner frequencies and the spectral
falloff y.
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3.3. Partial coherence

From the results of the preceding section we
know that if the distribution of sizes of
subevents was such that (3.5) became an equal-
ity, the choice of the normalizing constants o;
would be unambiguous. Thus in a general situ-
ation we can normalize the distribution of
subevents so that (3.5) becomes the equality by
taking each subevent C times, where

%"

077"+ 07 +. .+

and normalize all subevents by (@wy/w;)>.
This procedure will result in a simultaneous fit
to the lowest and highest frequencies by satis-
fying both relations (3.3) and (3.4). That leaves
us with the major problem of adding subevents
in the intermediate frequency range.

Let us first write down two relations be-
tween the target Sy (@) and subevents’ S; (w)
spectra which led to (3.3) and (3.4). At the
lowest frequencies we have coherent summa-
tion:

IS0 (@) = 151 (@)] +1S; ()] +..... +ISy ()]

while at the highest frequencies we have inco-
herent summation:

IS0 (@) = ISy (@) + 1S, (@) +. ... Sy (@)

We can rewrite these two relations in a uni-
form manner by introducing an exponent £ (@)
that determines the power to which each
subevent spectrum should be raised before be-
ing added together. The value £(@) = 1 corre-
sponds to the coherent summation, and € (w) = 2
corresponds to the incoherent summation.
Thus

1o (@IF® = IS, (@F@ +18, (@) +....+Sy (@)

If we assume that the radiation pattern of
subevents abruptly changes from being per-
fectly coherent below the target corner fre-
quency @, to being perfectly incoherent above
Wy, that is introducing a step function & (®):

1, < a,
£(w) = ,
2, 0> ay

we will get qualitatively the same result as
Joyner and Boore (1986, 1988), namely, a gross
underestimation of the target spectrum between
the target corner frequency and the corner fre-
quency of the largest subevent (fig. 2a,b).

To deal with this problem we introduce a
gradual transition from perfect coherence to
perfect incoherence in the intermediate fre-
quency range (fig. 7a). Using an analogy to the
theory of optics we call this transition fre-
quency interval «a partial coherency» range.

The partial coherence exponent can be ex-
plicitly calculated in the case of identical
subevents from the condition that subevents
add to a perfect fit to the target spectrum. Us-
ing (1.5) and (3.1) we find:

1
g(w) s(w_)

VCSMOe
4l e B v wvE
W, @y
from which we can solve for

e

1-

e(w) =

(3.6)

Note that this expression does not depend on
either J or ¥.

For a distribution of subevents we have a
distribution of corner frequencies. Although we
can use any of these corner frequencies, we de-
termine € (@) using the smallest @, corre-
sponding to the largest subevent. By the defini-
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litude spectrum (f;

tion of & (w) the fit to a target spectrum would
be perfect had we used a single subevent as in
Joyner-Boore’s original method. In a general
situation the error due to such approximation is
not very significant (fig. 7b); we account for
75% of the energy.

3.4. Algorithm for spectral prediction

In this section we summarize the results of
previous sections that describe a new general

s of subevents between 10 Hz and 2
tion pattern of subevents from a perfect coherence below foto
ter introducing partial coherence exponent (3.6) (dotted line)

requency [Hz]

ponent & (f), determined by the expression (3.6) with Jo=1Hz and f;, = 10 Hz;

= 1 Hz) (solid line) by a fractal distribution of subevents
5 Hz assuming an abrupt change of radia-
a perfect incoherence above f; (dashed line); af-

algorithm for empirical spectral prediction
(Archuleta and Tumarkin, 1993). This ap-
proach utilizes only amplitude spectra of
subevents, thus it does not require any phase
information (such as location of the hypocen-
ter, time delays between subevents, etc.).
Suppose that at a given site you have N
records of earthquakes, located within the
prospective rupture area of a large earthquake
with the seismic moment M, and the corner
frequency @,. The idea of the algorithm, com-
mon for all EGFM approaches, is that the ob-
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served records already contain information on
the propagation path from the simulated source
to the studied station and on the local geology
beneath the station. Moreover, if there is a way
to use as many recorded events, as possible,
then the possible dependence of the simulated
spectrum on peculiarities of a single record is
significantly reduced. Also, different path ef-
fects are taken into account by spanning a ma-
jority of the anticipated fault plane. This is es-
pecially important in case of larger earthquakes
where rupture lengths of tens kilometers are
comparable to the distarce between source and
site.

The proposed algorithm includes the fol-
lowing steps:

1) Calculate the seismic moment My; S-
wave corner frequency @;; and the source spec-
tral falloff y for each jth subevent. This can be
done, for example, on the basis of existing au-
tomated methods of fitting observed spectra
(e.g., Fletcher and Boatwright, 1991; Lindley
and Archuleta, 1992).

2) Determine the scaling exponent o for the
seismic moment. This is done by applying re-
gression analysis to logarithms of values of the
seismic moment and of corner frequencies, cal-
culated in step (1).

3) Determine the apparent source corner
frequency @y at the site according to the di-
rectivity factor D controlled by the azimuth 6
from the rupture direction to the given site:

(relation (1.10)).
4) Multiply each observed amplitude spec-
trum |U; (@)] by (@og/@))*" .

6
|U; ()] = (a;"’)y U; ()]

i

5) Calculate the normalizing constant C for
the observed distribution of subevents:

-2
Wpo”
O+ 3T+ o

6) Determine the partlal coherence expo-
nent € (®):

e(w) =

where ®;, is the smallest corner frequency of
subevents, i.e., the corner frequency of the
largest subevent.

7) Raise the normalized amplitude spectra
IU (w)| to the power €(w) and add them to-
gether taking each normalized spectrum C
times. The resulting spectral prediction |U, ()|
is expressed by:

1 —~
Uy (@) = CW{I Uy (@)@ +

1
| Uz (@) +... + l~]N(a))|6(w)}£(w)_

8) Scale the resulting spectrum |U, (@)|, ac-
conting for a possible difference between the
average stress drop of subevents and the stress
drop of predicted main event. Technically this
is achieved by comparing the given value of
the seismic moment M, for the simulated event
with the result of extrapolation of the regres-
sion relation, obtained in step 2, to the value
woe of the apparent source corner frequency.
The ratio between the target and extrapolated
seismic moments gives the scaling multiplier
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to be applied to predicted spectrum U, (w), ac-
counting for the difference in stress drops.

4. Testing on data

We have tested the time series and spectral
algorithms on data from the Joshua Tree earth-
quake sequence. Results from a retrospective
«prediction» of the My, 6.1 Joshua Tree main-
shock using 5 smaller earthquakes (table I) are
presented. The source parameters of the used
subevents were taken from (Lindley, 1994). In
order to obtain S-wave corner frequencies we
divided P-wave corner frequencies from table I
by V3. For example, for the main event we get
fo = 0.29 Hz. The main event is almost purely
strike-slip rupture with a roughly 12 km square
fault-plane striking N10°W. For a rupture ve-
locity 3 km/s that would imply a total rupture
duration of 4 s and the source corner frequency
0.25 Hz, which is consistent with the above
mentioned value. The rupture propagated uni-

laterally from the hypocenter to the North
(Kanamori et al., 1993).

The studied site is the Garner Valley Down-
hole Array (GVDA) (Archuleta er al., 1992,
Archuleta and Tumarkin, 1993) located at an
epicentral distance of 45 km and an azimuth
226° from the mainshock. Therefore the angle
0 for calculating the directivity factor is 124°.
Consequently D = 0.68 assuming v = 0.85 §.
We used digital acceleration records from the
downhole three-component, dual-gain kinemet-
rics force balance accelerometer, located 220 m
below the surface in a competent rock (shear
wave velocity 3.15 km/s), and from a similar
surface instrument. Upper 18 m are comprised
of recent alluvial deposits forming a lakebed
valley (shear wave velocity between 280 and
90 m/s) (Archuleta er al, 1992). The water
table is about 1 m (during winter rainy season
it reaches the surface). Thus we can test the
performance of the algorithms applied to a
rock site and a soft soil liquefiable site.

We first show the time-series predictions

Table 1. Source parameters of the Joshua Tree earthquake sequence. Listed are the main event and

5 subevents, used in the present study.

Earthquake Latitude N Longitude W Depth  Distance’ M, Seismic P-wave Stress

(degrees (degrees (km) (km) moment corner drop

min) min) (dyne-cm) frequency  (bars)

(Hz)

4/23

02:25:30 33 57.37 116 19.05 11.5 1.0 4.6 1.2 107 1.47 31
4/23

04:50:23 33 57.67 116 19.05 12.38 0.0 6.1 1.9 10 0.51 203
4/23

18:56:03 33 59 47 116 17.06 3.49 10.1 4.4 3.1 102 1.91 17
4/26

03:07:58 33 59.59 116 19.94 8.73 53 3.6 7.9 10% 3.17 20
5/02

12:46:41 33 59.36 116 17.21 3.97 9.5 4.2 2.6 107 2.69 41
5/17

06:21:32 33 57.60 116 18.97 9.44 2.9 33 1.9 10 4.78 17

Earthquake locations are taken from the Caltech catalog. The seismic moment of the Joshua Tree main shock is taken from
(Kanamori et al., 1993). Seismic moments and P-wave corner frequencies of earthquakes were then determined by the spec-

tral ratio method by Lindley (1994). The ratio of P-wave to S-

wave corner frequencies is assumed to be V3.

* Distance is measured between the hypocenters of the main event and the aftershock.
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using the algorithm with a constant stress drop
scaling from section 2.5. We rearrange small
earthquakes according to their distances 1, 2.9,
5.3, 9.5, 10.1 km from the mainshock’s hypo-
center (table I). Having only 5 subevents and
consequently only 5 time-delays will provide a
very poor fit to the target source function. Thus
we have taken 100 subevents uniformly lo-
cated at hypocentral distances 0-12 km, i.e.,
p; =jl100, j =1, .., 100. As discussed in section
2.5. for subevents located at less than 1 km we
assume that their waveforms are similar to the
small earthquake closest to the mainshock’s
hypocenter (M; 4.6 foreshock), subevents posi-
tioned between 1 and 2.9 km are assumed to be
similar to the second from the origin small
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earthquake (M; 3.3 aftershock), etc. The simu-
lated time series are shown in fig. 8.
Although there is a scatter in the seismic
moment scaling for subevents, it is reasonably
well described by the value & = 3. The source
spectral falloff y was assumed to be 2 (Lindley,
1994). At the same time the stress drop of the
Joshua Tree main shock was approximately 10
times greater than its aftershocks (Kanamori et
al., 1993; Lindley, 1994). By multiplying the
main event corner frequency by the directivity
factor 0.68 we are already producing a seismic
moment that is 0.68 % = 3.3 times larger.
Therefore to account for the difference be-
tween the stress drops of the main event and
subevents we need to multiply our predictions

GVDA Surface EW
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Fig. 8. Time-series prediction of the Joshua Tree mainshock at the 220 m downhole and surface GVDA ac-
celerographs. Top traces are observed mainshock waveforms, bottom traces are simulations by the algorithm
described in section 2.5. Time-series were lowpassed below 25 Hz.
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Fig. 9. Empirical spectral prediction of the Joshua Tree mainshock at the 220 m downhole and surface

GVDA accelerographs. Observed mainshock Fourier am
by the algorithm described in section 3.4. are dotted li

from step 6 of section 3.4. by an additional
factor of 3 (step 8). Figure 9 shows compar-
isons of predicted whole record amplitude
spectra with observations.

Using random vibration theory (e.g., Joyner
and Boore, 1988) we obtain estimates of the
response spectrum from the Fourier amplitude
spectrum without using any phase information.
The only additional parameter needed for such
an estimate is the duration of the record. The
shorter the duration used for such an estimate,
the higher the predicted response spectrum.
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plitude spectra are plotted as solid lines, simulations
nes.

The explanation is simple: releasing the same
amount of energy (as the amplitude spectrum
is preserved) in a shorter time produces higher
amplitudes of the signal. Thus the underestima-
tion of the duration in this approach will result
in an overestimation of the response spectrum.
For the duration we used the value 12 s, which
corresponds to the average Trifunac-Brady du-
ration (Trifunac and Brady, 1975) of downhole
and surface horizontal components of accelera-
tion. For a forward prediction it is possible to
use an empirical estimate of the duration 7 in
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Fig. 10. Prediction of the 5%-damping acceleration response spectra from the Joshua Tree mainshock at the
220 m downhole and surface GVDA accelerographs. Observed response spectra are plotted as solid lines, re-
sponse spectra corresponding to time-series predictions (fig. 8) are dotted lines. Estimates obtained by the ran-

dom vibration method from the ESP predictions (fig. 9) are dashed lines.

terms of the earthquake’s corner frequency f
and epicentral distance r, e.g., T = 1/, +0.05 r
(Joyner and Boore, 1988).

Comparisons of observed response spectra
(solid lines) with predictions obtained from
time-series (dotted lines) and spectral (dashed
lines) methods are shown in fig. 10. The over-
all quality of predictions by the both the time-
domain and spectral approaches is very good,
although the spectral method tends to slightly
overestimate observed spectral ordinates at
longer periods.

5. Discussion

We have presented two new approaches —
time domain and spectral domain — to empiri-
cal ground motion prediction. Our results apply
to the problem of modeling large earthquakes
‘as multiple events.

Extending the idea of Wennerberg (1990)
we have developed a method for adding identi-
cal small subevents to match seismic radiation
from a large earthquake over the whole fre-
quency range from the lowest to the highest
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frequencies. In this method the position of a
subevent on the fault plane of the simulated
large event uniquely determines the subevent’s
rupture time. We corrected the negative rupture
times in the Wennerberg’s model of a linear
rupture and have extended the analysis to a cir-
cular rupture model (a different rupture geome-
try, e.g. expanding elliptical rupture, can be
treated analogously). We also considered a
fault consisting of Boatwright’s asperities.

Our results have interesting applications to
modeling of earthquake sources although the
circular faulting models introduced in this pa-
per are not supposed to describe a realistic
earthquake rupture process. Let us discuss
some obvious shortcomings of these models.
First the initial rupture velocity is always su-
pershear. Second the rise time over the fault is
constant and is equal to the duration of the
subevent. Consequently for a fault composed
of infinitely small Brune’s cracks the rise time
everywhere on the fault is zero but the rupture
velocity at the origin is finite. It turns out that
the rupture decelerates from the value 1.65 B at
the origin to 0 at the boundary with an average
value of the rupture velocity of 0.85 B. The av-
erage rupture velocity remarkably coincides
with the rupture velocity for the dynamic self-
similar circular rupture (Kostrov, 1964). The
rupture velocity for a similar fault composed of
infinitely small Boatwright’s asperities has a
singularity at the origin.

At the same time for a fault composed of fi-
nite subsources the rise time is not zero but the
rupture velocity at the origin is infinite. Indeed
at time zero we have an instantaneous rupture
of a finite area occupied by the first subevent.
This is common for numerical models of spon-
taneous rupture where some critical distance of
rupture nucleation is required (Andrews, 1976;
Day, 1982; Harris and Day, 1993). The stress
must be released over a finite area in order to
drive the rest of the fault. Until there is a better
understanding of the nucleation process of an
earthquake, we co not want to overinterpret the
physical nature of the circular ruptures.

The circular rupture introduced in section
2.3. does provide a kinematic description of a
source with finite rupture velocity over a finite
circular fault that produces a Brune pulse and
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the corresponding spectrum. This is very dif-
ferent from Brune’s original faulting model
(Brune, 1970) where the rupture velocity was
infinite. Our considerations can be generalized
to show that any source time function can be
modeled as a non-instantaneous rupture of a
homogeneous fault by choosing a specific vari-
able rupture velocity.

As we pointed out earlier, the distribution of
stress drops of subevents in a composite earth-
quake model uniquely determines the rupture
velocity over the fault plane. The relation (2.3)
shows that the converse is also true. At the
same time (2.3) implies that a small-to-large
earthquake transfer function P (@) uniquely de-
termines only the product of the functions
6(p (1) and p’ (9. This fact means that there is
a trade-off between rupture velocity and stress
drop (or moment release) (Boore and Joyner,
1978; Joyner, 1991). For a linear rupture an in-
crease in one of these parameters will imply a
proportional decrease in the other one. Thus by
performing source inversions using the empiri-
cal Green’s function method (e.g., Kanamori et
al., 1992) it is possible to determine only the
product of the rupture velocity and the moment
release at any moment of time. A similar prob-
lem was previously noticed in studies of more
sophisticated models of earthquake sources
(Madariaga, 1983; Spudich and Frazer, 1984).
We have also established a necessary and suf-
ficient condition (3.5) for the existence of a
variable stress drop composite earthquake for
any given set of subevents with uniformly dis-
tributed rupture times. In particular, the in-
equality (3.5) means that the total area of
subevents should be greater than the area of
the main event. For a constant stress drop com-
posite earthquake model this fact was estab-
lished in (Tumarkin et al., 1994).

The rupture models used in this paper are
based on an assumption that a subevent of a
large seismic source can be described as a
properly scaled and lagged small earthquake.
They provide a simple and straightforward ap-
proach to utilizing observations of small earth-
quakes to predict ground motions from large
earthquakes. On the other hand we outline two
major problems associated with this hypothe-
sis: singularity of the seismic moment release
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density 6(p) or the rupture velocity p’ (¢) in
(2.5), and the area paradox (3.5). Although the
physical processes of large earthquake ruptures
are still obscure, our results suggest that the
high-frequency radiation from a subfault of a
large rupture is different from the high-fre-
quency radiation of an individual earthquake.

We have proposed a simple algorithm of the
time-series prediction (section 2.5.) in which
time delays between subevents are uniquely
determined by their locations relative to the
main shock hypocenter according to the spe-
cific rupture velocity in this model. This algo-
rithm allows for any number of observed em-
pirical Green’s functions and requires only
four input parameters for the simulated large
event: i) target seismic moment M,; ii) size of
the rupture zone R; iii) location of the
hypocenter; and iv) direction of rupture propa-
gation. There are no other free parameters. By
applying the method to all three components of
ground motion we can predict simultaneously
the three components of ground motion at a
site. Thus the phase information between the
vertical and horizontal components is tied to-
gether.

In the framework of the empirical Green’s
functions method we suggest an alternative ap-
proach to prediction of most important for the
engineering practice site-specific characteris-
tics. In essence it is possible to produce ampli-
tude and response spectra without using the
phase information at all. We have introduced a
partial coherence exponent that controls the
procedure of summation of subevents ampli-
tude spectra in the entire frequency range. A
constant rupture velocity imposes an abrupt
transformation of the radiation pattern of
subevents in the vicinity of the main event’s
corner frequency. Our partial coherence expo-
nent allows for a gradual transition from a per-
fect coherence of subevents’ radiation at the
lowest frequencies to a perfect incoherency at
highest frequencies.

This empirical spectral prediction approach,
described in section 3.4., does not require the
knowledge of details of seismic rupture and is
theoretically capable of predicting ground mo-
tion spectra in the whole frequency range of

analyzed subevents. The implementation of
this algorithm is very efficient and straightfor-
ward.

6. Conclusions

We have developed and validated empirical
ground motion prediction algorithms satisfying
three critical conditions:

— the prediction is consistent with the entire
observed seismic spectrum from the lowest to
the highest frequencies;

— our source models incorporate the basic
scaling relations between source parameters
and spectral parameters;

— our methods allow for any subset of the
available data, i.e., for any number of recorded
empirical Green’s functions.

With these conditions met the ground mo-
tion prediction is internally self-consistent. It
accounts for the complexity of the source
while maintaining the basic seismic scaling re-
lations and the complexity of the path/site ef-
fects without being dependent on the character-
istics of a single empirical Green’s function.

Our time-series prediction algorithm is
based on determination of a non-uniform dis-
tribution of rupture times of subevents (Wen-
nerberg, 1990). By introducing a specific rup-
ture velocity we avoid the major problem of
deficiency of predictions in the vicinity of the
main event’s corner frequency. This problem is
an inherent feature of methods based on a uni-
form distribution of subevents’ rupture times
(Irikura, 1983; Joyner and Boore, 1986;
Boatwright, 1988).

We have proposed a new alternative ap-
proach to the problem of simulation of a large
earthquake by adding co-located subevents. By
introducing a novel notion of a partial coher-
ence we were able to sum subevents’ ampli-
tude spectra directly without using any infor-
mation on their rupture times and phase histo-
ries. Predictions by this method are not de-
pendent on details of the rupture nucleation
and propagation, location of asperities and
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other predominantly phase-affecting factors
that are responsible for the most uncertainty of
the time-domain methods.
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