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[1] We present a new procedure to invert for kinematic source parameters on a finite
fault. On the basis of the reciprocity relation of the Green’s functions, we use a newly
developed fourth-order viscoelastic finite-difference algorithm to calculate three-
dimensional (3-D) Green’s functions (actually the tractions) on the fault. We invert the
data for the unknown source parameters at the nodes (or corners) of the subfaults. The
source parameters within a subfault area are allowed to vary; this variation is calculated
through bilinear interpolation of the four nodal quantities. We have developed a global
nonlinear inversion algorithm that is based on simulated annealing methods to solve
efficiently for the nodal parameters. We apply this method to the 1989 Loma Prieta,
California, M 6.9 earthquake for both a 1-D and 3-D velocity structure. We show (1) the
bilinear interpolation technique reduces the dependence of inversion results on the subfault
size by naturally including the effects of nearby subfaults. (2) While the number of
synthetic seismograms that must be computed is greatly increased by the bilinear
interpolation, the structure of the inversion method minimizes the actual numbers of
computations. (3) As expected, complexity in the velocity structure is mapped into the
source parameters that describe the rupture process; there are significant differences
between faulting models derived from 1-D and 3-D structural models. INDEX TERMS: 1734
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1. Introduction

[2] Kinematics parameters of the rupture process
[Haskell, 1964] form the basis of our inferences about
the nature of earthquakes and provide a stepping stone
for our understanding of earthquake physics. The kine-
matic parameters obtained from inversion of ground
motion waveforms can be used to infer the stress drop
distribution [e.g., Mikumo and Miyatake, 1995; Bouchon,
1997; Day et al., 1998] that in turn can be used as the
input for dynamic models [e.g., Olsen et al., 1997;
Nielsen and Olsen, 2000; Peyrat et al., 2001; Favreau
and Archuleta, 2003]. The kinematic parameters have
been used to infer scaling properties [e.g., Somerville et
al., 1999; Mai and Beroza, 2002] and as input to finite
difference codes in an attempt to determine frictional
parameters [e.g., Ide and Takeo, 1997]. Of course, the
spatial and temporal distribution of source parameters is
critical in forward modeling of ground motion that can

be used to predict ground motions for engineering
design purposes and to study the effects of complex
earth structure.
[3] The most common method for determining the

kinematic source parameters on a finite fault is to invert
the observed ground-motion data. In simple terms this is
an automatic procedure that computes synthetic seismo-
grams that are compared with the data [e.g., Olson and
Apsel, 1982; Hartzell and Helmberger, 1982]. The pro-
cedure adjusts the kinematic parameters at a predeter-
mined number of points on the fault. The inversion
continues until an objective function that measures the
difference between the synthetic seismograms and the
data for all of the stations reaches a minimum. In
the inversion the Green’s functions play a critical role
because they are essential for computing synthetic seis-
mograms. Of course, the Green’s functions depend on an
assumed model that includes the geological structure, the
elastic parameters, density and attenuation parameters. In
some cases, empirical Green’s functions have been used
to invert for the kinematic parameters [Hartzell, 1989].
The finite-fault inversion usually requires dividing the
fault into a grid of subfaults where each has a set of
parameters to be determined by the inversion. The data
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(time histories of ground motion) at a number of different
stations are approximated by a linear sum of the syn-
thetics generated by the subfaults. The size of subfault is
a factor that affects the inversion. Obviously, we would
like as small a subfault as possible to reflect the spatial
variation of the rupture, but this leads to a larger set of
unknown parameters and instability in the procedure. The
fewer the number of subfaults the more overdetermined is
the problem; however, the spatial resolution of the rupture
process decreases.
[4] Determining only the distribution of slip amplitude is

a linear problem. The static slip distribution is inadequate
for describing the rupture process; a slip distribution does
not radiate. The earthquake described kinematically is the
process of going from one slip distribution (generally
assumed to be zero) to another distribution of slip. The
entire suite of kinematic parameters that describe the spatial
distribution of slip amplitude, rupture velocity, rise time, or
temporal function of the slip function, on the fault need to
be determined. Comparisons of different rupture models
based only on the similarity of the slip distribution are
inadequate. The temporal quantities, for example, rupture
time and rise time, are critical; however these temporal
variables are not linearly related to the data [Archuleta,
1984]. Determining these temporal variables along with the
slip is a nonlinear problem.
[5] Over the last two decades, the finite fault inversion

method has been greatly improved. Initially a linear least
squares method was used to determine the two compo-
nents of slip for each subfault [Hartzell and Helmberger,
1982; Olson and Apsel, 1982]. Olson and Apsel [1982]
allowed for a non-constant rupture velocity or variable
rise time by introducing multiple time windows, i.e., slip
in a particular subfault could occur more than once. An
interesting feature in their method was that the time
windows were centered about a constant rupture velocity;
a rupture could be faster or slower than the assumed
rupture. Hartzell and Heaton [1983] used multiple time
windows where the first window in which slip can occur
is the time of the assumed rupture velocity. Consequently,
any rupture variation can only lead to a slower rupture
velocity than the one used to initialize the inversion.
Cohee and Beroza [1994] provide a synopsis (up to
1994) of different approaches [Cohee and Beroza, 1994,
and references therein] to invert for the temporal varia-
bles. In particular they investigated the differences in
source inversions that use single and multiple time
windows. Some of their salient results include (1) sin-
gle-window methods allow larger variations in rupture
time with fewer model parameters; (2) multiple-window
methods are more flexible in that they allow for spatially
variable rise time as well as rupture time with the caveat
that the solutions are less stable; (3) both methods work
well when the rise time is short compared to the periods
of interest; (4) while the slip distribution may be similar
for both methods, there are important differences in the
rupture propagation models. Cohee and Beroza [1994]
and Hartzell [1989] both found that adding multiple time
windows commensurately added to the seismic moment.
[6] Olson and Anderson [1988], using synthetic data,

took a different approach: invert for the kinematic vari-
ables in the frequency domain [Spudich, 1980]. In such a

method the rupture time and slip function are completely
arbitrary and to be determined from the data. To our
knowledge this method has not been applied to data.
Cotton and Campillo [1995] slightly modified this method
by assuming a slip distribution that was parameterized by
its rise time, each point on the fault could slip only once
and the rupture was unilateral. Using this approach they
successfully inverted near-source ground motion data from
the 1992 Landers earthquake. More recently global inver-
sion methods have been introduced that simultaneously
determine slip amplitudes, rupture time, and rise time [e.g.,
Hartzell et al., 1996; Zeng and Anderson, 1996; Ji et al.,
2002].
[7] Although various numerical methods have been

developed for the simulation of wave propagation in
complex media, the synthetic Green’s functions used in
previous finite fault inversions have been calculated from
1-D (flat-layered) homogeneous velocity models that did
not account the more realistic heterogeneous structure.
Because the seismogram is a convolution of the source
and path effects, the path effects that are unaccounted for
can be mapped into the source parameters. While 1-D
approximations can be justified in certain areas, the
rupture process determined from such inversions may be
significantly influenced by the omission of three-dimen-
sional (3-D) structural effects [Hartzell, 1989]. Given the
recent advent of efficient 3-D numerical wave propaga-
tion methods and improved knowledge about the 3-D
structure model in some active seismic zones [e.g.
Brocher et al., 1997; Hauksson and Haase, 1997;
Magistrale et al., 2000], Liu and Archuleta [1999] used
3-D Green’s functions to invert for the kinematic param-
eters on a finite fault. Graves and Wald [2001] and Wald
and Graves [2001] inverted synthetic data to examine
source parameters resulting from both 3-D and 1-D
Green’s functions. They found that inaccurate Green’s
functions, either 3-D or 1-D, produce incomplete source
descriptions. As noted by Hartzell [1989] this is the
problem of resolution. We cannot know how different
the approximate model is from a true model, and thus we
cannot ‘‘make an accurate determination of resolution of
the source’’ [Hartzell, 1989]. He further added ‘‘inversion
theory and source modeling have advanced to the point
where the Green’s functions are the weakest link in the
analysis.’’ Using synthetics, Graves and Wald [2001]
similarly showed that because a 3-D Green’s function is
used the resolution is not necessarily improved. Ramos-
Martı́nez and McMechan [2001] inverted full waveforms
for point source descriptions of Northridge aftershocks.
They found that that using the 3-D structure of Magistrale
et al. [1998] reduced the residuals and significantly
improved the uniqueness of the source compared to a 1-D
model. They also conclude that there is still room for lots of
improvement in the 3-D structural model that will lead to
better results [e.g., Hartzell, 1989; Graves and Wald, 2001].
Given that the Earth structure will never be perfectly
known, we are left to use structural models that approxi-
mate the actual earth as well as it is known.
[8] While determining an accurate structural approxima-

tion to the earth remains a fundamental problem that is
beyond the intent of this paper, even the choice of the
subfault size can have a significant effect on a finite-fault
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inversion [Hartzell and Langer, 1993; Das and Suhadolc,
1996]. In most finite fault inversions, a source parameter—
such as slip amplitude, rake, or rise time—is almost always
taken to be a constant within a subfault. This may be the
primary reason that solutions are dependent on the subfault
size. What is often left unstated is that the subfault is often
subdivided by factors of 10 or more in order to compute the
synthetics that are compared with the data. If so, the spatial
variation of slip amplitude and rise time within a subfault
cannot be neglected in the inversion. As shown later
(equation (1)) a synthetic seismogram is represented as
the summation of many point sources. To simulate accu-
rately the ground motion in the opposite direction of the
rupture, the distance between two point sources should
be less than the rupture velocity divided by eight times
the maximum frequency of interest [e.g., Spudich and
Archuleta, 1987]. In a forward simulation (described later)
we show that the interval between two adjacent point
sources should be less than one-tenth the shortest wave-
length. This limitation on the spacing of point source comes
from the fact that the spatial variation of source parameters,
especially the rupture time and rise time, will generate high
frequency synthetic ground motion. In a finite fault inver-
sion, the dimension of subfault is often more than half of the
minimum wave length of interest. Thus one can expect that
variation of source parameters within a subfault will affect
the synthetic ground motions; these in turn will affect the
resulting determination of kinematic parameters. In fact,
most finite fault inversion methods approximate the varia-
tion of rupture time by summing the Green’s function with a
time delay that is calculated using a constant rupture
velocity across a subfault.
[9] Another factor to be considered is that the source

parameters of a particular subfault affect only the seismo-
gram radiated from this subfault. Thus parameters among
neighboring subfaults may have no correlation. To reduce
this incoherency one can smooth or constrain the variation
of parameters between neighboring subfaults [e.g., Olson
and Apsel, 1982; Hartzell and Heaton, 1983; Wald et al.,
1991; Sekiguchi et al., 2000]. The smoothing of source
parameters enforces a kind of spatial correlation among
source parameters during the inversion process. The diffi-
culty of implementing a smoothing criterion is determining
the relative weight between the waveform fit and the
smoothing criterion, which typically varies from problem
to problem [Sekiguchi et al., 2000] and is often subjective in
evaluating the tradeoff between resolution and the fit
between synthetic and recorded waveforms [Graves and
Wald, 2001]. On the other hand, the requirement of smooth-
ing in a finite fault inversion implies that the spatial
incoherence of source parameters tends to reduce the
stability of the inversion. Consequently, it is necessary to
find an algorithm that mitigates the effect of the subfault
size on the solution.
[10] The basic nature of the kinematic parameters and

their relationship to the data presents its own problem. The
two slip components (one in the dip direction, another for
the strike direction) are linearly related to the ground
motion. They can be conveniently determined using linear
least squares. However as mentioned earlier the other source
parameters, such as rupture time and rise time that are
essential for fully describing the kinematics of the rupture,

are nonlinearly related to the data [Archuleta, 1984]. Al-
though a linearized, iterative technique can be used to solve
the problem [Tarantola and Valette, 1982], the solution may
depend on the starting model [Cotton and Campillo, 1995].
This feature of parameterization compels us to look for
nonlinear inversion methods that can be applied to deter-
mining the kinematic parameters of the rupture [Liu et al.,
1995; Hartzell and Liu, 1996; Hartzell et al., 1996; Zeng
and Anderson, 1996; Ji et al., 2002].
[11] In this paper we present a new procedure to invert

data for the kinematic parameters that reflect an earthquake
rupture on a finite fault. First, we describe how we consider
the effects of complex geology on finite inversions by using
Green’s functions calculated from a 3-D velocity structure.
Second, we introduce a bilinear interpolation technique to
represent variation of source parameters within a subfault
area. Third, using this bilinear fault parameterization, we
develop a global inversion method for efficiently determin-
ing source parameters from inversion of ground motion
data. Finally, to demonstrate the efficiency of bilinear
interpolation technique and to study the effect of velocity
structure on the inversion solution, we reanalyze the 1989
M 6.9 Loma Prieta earthquake.

2. Calculation of 3-D Green’s Functions

[12] The 3-D seismic wave propagation problem is cur-
rently solved by discrete numerical methods such as the
finite-difference, finite-element, spectral-element and pseu-
dospectral methods. In general there are two ways to
calculate the 3-D Green’s functions. One can apply an
impulsive slip (or equivalent body force) at a point on the
fault surface and the Green’s functions are obtained at
various observers for each applied force. If a Green’s
function is required at NP points over a finite fault, the
total number of computations will be 2 � NP, regardless the
number of observers. (The factor of 2 arises because each
point on the fault needs a computation for each of the two
slip components.) Alternatively, one can use reciprocity
where a single body force is applied at the observer location
and a Green’s function (actually a traction) is evaluated
everywhere on the fault [Day, 1977; Archuleta and Day,
1980; Spudich and Archuleta, 1987]. In this case three
numerical calculations must be performed for each observer
location (one for each component of ground motion). This
approach requires 3 � NS computations to obtain all of the
Green’s functions where NS is the number of stations.
[13] Given that the value of NP is much greater than NS,

we choose the second method to calculate the Green’s
functions. Thus using reciprocity we can reduce the com-
putational burden dramatically [Spudich and Archuleta,
1987]. Moreover, the displacement um (w) at a station due
to the slip discontinuity across fault plane S can be simply
represented as

um wð Þ ¼
Z Z

S
Dus x;wð Þ

� ½cos l xð Þð ÞTm
1 x;wð Þ þ sin l xð Þð ÞTm

2 x;wð Þ
�
dS; ð1Þ

where Dus (x, w) is the slip discontinuity (dislocation) of
point x = (x, y) on S; l is the rake angle of the dislocation;
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(T1
m, T2

m) is the traction vector on S caused by a point force
applied in the mth direction at the station [Spudich and
Archuleta, 1987]; the subscripts 1 and 2 indicate strike and
up-dip direction, respectively. Using the staggered-grid
velocity-stress finite difference scheme this form is
optimum for the Green’s function calculations because we
directly obtain the traction with the same accuracy as the
particle velocity.
[14] We use a 3-D viscoelastic finite difference (FD)

algorithm of Liu and Archuleta [1999]) to calculate the
traction Green’s functions in equation (1). The FD algorithm
is accurate to fourth order in space and second order in time.
It employs an explicit time-stepping, staggered-grid, veloc-
ity-stress formulation; it can simulate constant or frequency
dependent Q. We first compute the six-components of stress
at points on the fault caused by a body-force pulse inserted
at a recording station, generally on the free surface. These
stresses are then projected to the fault surface to obtain the
two components of traction on the fault.
[15] To demonstrate the accuracy of reciprocal Green’s

functions, we compare the synthetic seismograms calculated
using reciprocity of the representation theorem and the FD
technique with seismograms obtained using a frequency
wave number method. We use a point source double-couple
with a strike of 30�, dip of 60�, rake of 50�, and at a depth of
1 km. The moment-rate function is S(t) = M0t/T

2 exp(�t/T),
where T = 0.1 and M0 = 1018 Nm. The velocity structure
model is laterally homogeneous (Table 1). The observation
point is located at the surface at a distance of 10 km due east
of the epicenter. In the FD calculation, the grid spacing is
0.1 km and the time step is 0.008 sec. With this grid
spacing, the model has 6 grids per minimum shear wave-
length at the upper frequency limit of 3.0 Hz. The velocity
seismograms are low-pass filtered with a corner frequency
of 3.0 Hz. The seismograms from the two methods are
compared in Figure 1. The agreement between the wave-
forms is very good; there is a small difference in a later
arriving wave generated by the artificial boundary in the FD
simulation.

3. Finite Fault Parameterization

[16] Similar to a conventional finite fault inversion, our
fault parameterization also requires discretizing a seismic
fault plane into finite number of subfaults. However, our
subfaults are quadrilateral elements, which are not neces-
sarily rectangular and equal in area. That is, the shape and
area of each quadrilateral can differ from others. We assign
the unknown source parameters to the nodes (or corners) of
the subfaults. We do not assume that the source parameters
within a subfault are constant. The source parameters within
each subfault are calculated by bilinear interpolating the
four nodal quantities of the subfault.
[17] Inspired by the works of Cotton and Campillo

[1995], Hartzell et al. [1996], and Ji et al. [2002], the
temporal variation of slip discontinuity on the fault is

represented by a functional form. We assume that the
temporal behavior of a slip rate function is given by

@S t; r; pð Þ
@t

¼ C
t

r

� �p
1� t

r

� �5�p

; 0 < t < r; ð2Þ

where r is rise time or duration of slip; C is a normalizing
constant such that S(t) = 1 when t 	 r; and the exponent p
controls the shape of slip rate function. The exponent p can
vary from 1 to 4. In the particular case p = 1 this slip rate
function has an amplitude spectrum that is practically
identical to the Aki-Brune w-squared model [Aki, 1967;
Brune, 1970]. Using a slip rate function that requires only
one or two parameters makes the inversion more stable as
compared to the multiple time window technique that is
frequently used [e.g., Hartzell and Heaton, 1983; Wald and
Heaton [1994]; Sekiguchi et al., 1996].
[18] Considering the limited amount of the information

that can be extracted from ground motions we restrict the
inversion to solve for a few spatial and temporal source
parameters at all nodes: slip amplitude D, rake angle l,
rupture velocity c, rise time r, and/or the exponential p. Here
the rupture velocity of a node is defined as the average
speed of rupture from the hypocenter to this node. The local
rupture velocity at a node may be significantly greater or
less than the corresponding average velocity.
[19] By knowing the nodal values of source parameters,

values of source parameters at any point within a subfault is
calculated using bilinear interpolation. Without loss of
generality, we use a subfault with an index e (left side,
Figure 2) to explain the interpolation of a source parameter
me. The subfault is a quadrilateral element defined by the
location of its four nodal points (xi

e, yi
e). The values of a

source parameter me at node i is mi
e, where i = 1, . . ., 4. If the

quadrilateral element is rectangular, the bilinear interpolat-
ing can be directly applied to calculate the value of me at any

Table 1. Velocity Model

VP, km/s VSm km/s Density g/cm3 QP QS Thickness, km

4.0 2.0 2.6 180 100 1.0
6.0 3.464 2.7 250 150 . . .

Figure 1. Comparison of three-component synthetic
velocity seismograms calculated with frequency-wave
number technique (solid line) and 3-D finite difference
technique (dashed line). The difference between the wave-
forms from the two techniques (dotted line) is very small.
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point (xe, ye) within the subfault. In the general case, we
borrow the concept of isoparametric elements used in the
finite element method [Hughes, 1987] to map a given
quadrilateral into a bi-unit square shown at the right of
Figure 2. The point (xe, ye) is first related to a point (x, h) in
the bi-unit square as follows:

xe x; hð Þ ¼
P4
i¼1

Ni x; hð Þxei

ye x; hð Þ ¼
P4
i¼1

Ni x; hð Þyei
; ð3Þ

where Ni are the shape functions, and has the form

N1 x; hð Þ ¼ 1

4
1� xð Þ 1� hð Þ N2 x; hð Þ ¼ 1

4
1þ xð Þ 1� hð Þ

N3 x; hð Þ ¼ 1

4
1þ xð Þ 1þ hð Þ N4 x; hð Þ ¼ 1

4
1� xð Þ 1þ hð Þ

: ð4Þ

The value of me at point (xe, ye) is then calculated by

me xe; yeð Þ ¼
X4
i¼1

Ni x; hð Þme
i : ð5Þ

For a point (x, h) in the bi-unit square, the coordinate (xe, ye )
of the corresponding point in subfault e is determined by
equation (3). Values of the source parameters at point (xe, ye )
are obtained through bilinear interpolation according to
equation (5).
[20] Following the basic assumption in seismology that a

large earthquake can be simulated by a distributed set of
point dislocations that cover the fault, we assign Nx points
of equal spacing along the x direction, and Nh points along
h. Consequently every subfault contains NxNh interior point
sources. Synthetics are computed for every interior point
and summed to produce a seismogram from each subfault.
Thus equation (1) can be approximated as

u wð Þ 
 1

NxNh

XNe

e¼1

XNx

j¼1

XNh

k¼1

De
jkS rejk ; p

e
jk ;w

� �
exp �iwtejk
� �

� cos le
jk

� �
T1 xejk ; y

e
jk ;w

� �h
þ sin le

jk

� �
T2 xejk ; y

e
jk ;w

� �i
;

� Je xj; hk
	 


ð6Þ

where the coordinate (xj, hk) of a point in a bi-unit square is

xj ¼
2j� 1

Nx
� 1; hj ¼

2k � 1

Nh
� 1 ð7Þ

and the value of the Jacobian determinant Je (xj, hk) is given
explicitly by

J e x; hð Þ ¼ det

P4
i¼1

@Ni

@x
xei

P4
i¼1

@Ni

@x
yei

P4
i¼1

@Ni

@h
xei

P4
i¼1

@Ni

@h
yei

6666664
7777775: ð8Þ

Ne is number of subfaults; Djk
e is the dislocation amplitude

at the point (xjk
e , yjk

e) within a subfaulte, ljk
e is the rake, tjk

e is
the rupture time (the distance between this point and
hypocenter divided by the rupture velocity cjk

e), rjk
e is the rise

time and pjk
e is the exponent that determines the shape of

the slip function S. The source parameters are evaluated
using equation (5). Normally, the Green’s functions at point
(xjk

e, yjk
e) are also calculated through bilinear interpolation.

The accuracy of equation (6) is highly dependent upon
frequency and upon the observer’s position with respect to
the rupture propagation direction [Spudich and Archuleta,
1987]. Our numerical tests demonstrate that the interval
between two adjacent point sources should be less than one-
tenth of the shortest wavelength.
[21] Although the spatial distributions of source parame-

ters are not smooth at the interface of two adjacent sub-
faults, they are continuous within the whole fault. The
seismograms radiated from a subfault depend on the source
parameters at four nodes rather than just one. Moreover, a
change in the parameters at a node also affects the syn-
thetics resulting from the adjacent subfaults because a node
normally connects four subfaults. Thus the bilinear interpo-
lation enforces a spatial correlation among source parame-
ters in our finite fault inversion. The efficiency of this fault
parameterization is demonstrated in the following section by
applying it to analysis of the Loma Prieta earthquake.

4. Inversion Procedure

[22] Source parameters at the nodes of subfaults are
determined by minimizing a misfit or objective function

Figure 2. A change of coordinates that maps the given quadrilateral element (subfault) into the bi-unit
square. The solid circles represent the nodes of subfault. The number near a node denotes local node
ordering.
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that compares synthetic time histories with the data. In the
following, we first discuss the choice of a suitable objective
function and then describe an inversion method that mini-
mizes the objective function by finding the optimal set of
source parameters.
[23] There is a wide range of objective functions that have

been used in the process of comparing the synthetics with
the data [e.g., Hartzell et al., 1991, 1996; Zeng and
Anderson, 1996]. Minimizing the L2 norm is the most
popular approach used in inverse problems because it leads
to the easiest computations—a least squares problem. The
basic problem is that least squares solutions are not robust,
i.e., solutions are very sensitive to a small number of large
errors in the data set [Tarantola, 1987]. Following Sen and
Stoffa [1991] and Hartzell et al. [1996], we define our
objective function e as

E Mð Þ ¼
XNd

1

Wd 1�

Pwe

wb

uo wð Þus* wð Þ þ uo* wð Þus wð Þð Þ

Pwe

wb

uo wð Þuo* wð Þ þ
Pwe

wb

us wð Þus* wð Þ

0
BBB@

1
CCCA

þWc constraintsð Þ; ð9aÞ

whereM is the vector of model parameters, Nd is the number
of data records,Wd is aweight reflecting the quality of the data
record, (wb, we) is frequency band in which we compare
synthetics us(w) with observed data uo(w), and the asterisk
indicates complex conjugate. Two types of constraints are
chosen: one that minimizes the difference between slip on
adjacent subfaults; and one that minimizes the total moment
[Hartzell et al., 1996]. Using additional constraints increases
the stability of inversion but reduces the resolution. The
weight Wc is used to adjust the trade-off between fitting the
data and satisfying the constraints. This value is obtained by
trial-and-error to ensure that the fits to data are not strongly
degraded. The first part of this objective function is equivalent
to the L2 norm divided by the sum of squares of the data and
the synthetics. It is a tradeoff between cross-correlation and
L2 norm. Besides considering signal shape as cross-correla-
tion does, this objective function also uses the amplitude
information of signal like least squares. However, this
objective function is less sensitive to the amplitudes than
the standard least squares.
[24] Because it is very fast to compute the convolution

of source functions and Green’s functions synthetics in
frequency domain, it is more efficient to compare the syn-
thetic data with observations using equation (9a). There are
situations where it is more desirable to make the comparison
in the time domain. One good reason is that we can easily limit
the timewindow used in inversion to the direct arrivingwaves
in order to mitigate the stronger influence of the uncertainties
in the velocity structure on later arrivals. In the time domain
the objective function given in equation (9a) has the form:

E Mð Þ ¼
XNd

1

Wd 1�
2
Pte
tb

uo tð Þus tð Þð Þ

Pte
tb

u2o tð Þ þ
Pte
tb

u2s tð Þ

0
BBB@

1
CCCAþWc constraintsð Þ;

ð9bÞ

where (tb, te) is the time window for the inversion. The
synthetic time history us(t) is calculated from the inverse
Fourier transform of us(w).

[25] Hartzell et al. [1996] applied the hybrid global
search algorithm of Liu et al. [1995] to invert for the two
slip amplitudes, rupture time, and rise time. This algorithm
perturbs all of the source parameters at the same time. On
the basis of our numerical tests, we find that the efficiency
of this algorithm decreases dramatically when a fault has
more than 100 subfaults. Ji et al. [2002] took another
approach. They chose a particular kind of the simulated
annealing method (SA), called the heat-bath algorithm
[Rothman, 1986], to search for the best model. This algo-
rithm acts by perturbing the model parameters one by one.
As indicated by Ji et al. [2002], synthetic seismograms from
only one subfault need to be updated at each perturbation.
Thus, the calculation of objective function can be very fast.
Another advantage of this method is that it is well suited for
problems with a large number of free parameters [Sen and
Stoffa, 1995].
[26] Using our fault parameterization, we have developed

a simulated annealing algorithm by combining the algo-
rithm of Liu et al. [1995] with the heat-bath algorithm used
by Ji et al. [2002]. In order to describe the algorithm, we
assume that the source model vector M consists of N nodes,
and each node has I model parameters, thus M =
(m1,1,. . .,mI,1,m1,2,. . .,mI,2,. . .,m1,N,. . .,mI,N).
[27] Following the analogy with annealing in a thermo-

dynamic system, this algorithm is initiated at a suitably high
temperature and then allowed to cool slowly according to an
annealing schedule. At each temperature, the algorithm is
designed to search the entire model space node-by-node.
This search procedure is similar to the heat-bath algorithm.
However, this method simultaneously perturbs all of the
model parameters at one node. The range of the perturba-
tions is proportional to the temperature. After perturbing the
current model parameters at a node has generated a pre-
specified number of new models, one of the new models is
selected to replace the current model, and the search
procedure moves to the next node. A schematic diagram
of the algorithm is given in Figure 3. The details of each
step of the algorithm are described below.
[28] The algorithm starts with a random model whose

parameters are initialized by

mi;n ¼ mmin
i;n þ xi;n mmax

i;n � mmin
i;n

� �
; ð10Þ

where mi,n is the ith source parameter of current model at
node n; mi,n

min and mi,n
max are predetermined minimum and

Figure 3. A pseudo Fortran code for the developed
simulated annealing algorithm.
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maximum constrains on mi,n. A random number xi,n is
uniformly distributed in the interval (0, 1). This initializa-
tion allows the model parameters to range uniformly over
the preset model space we wish consider. Ideally, we would
like to initiate the algorithm at a high initial temperature T0,
and then cool very slowly until the model converges to the
global minimum. However, this process may require
enormous computing time. In practice we choose an
exponential cooling schedule suggested by Rothman [1986],

Tk ¼ T0hk ; ð11Þ

where Tk is the temperature at iteration k; h is cooling rate.
Iterations continue until some predetermined minimum
value of objective function E is reached or until a preset
number of iterations are completed. In practice, we do not
know a priori the minimum value of the objective function;
we use a preset iteration number K as convergence criterion
of the algorithm. The choice of initial temperature and
cooling rate, as well as the number of iterations, is problem
dependent and is discussed below.
[29] At each iteration or temperature Tk the search process

examines the subfault nodes sequentially. When a node (say
node n) is visited, the current model parameters at this node
are perturbed repeatedly to obtain a number of new models
Mn

p, which are the same as the current model M except that
at node n the new model parameters are given by

m
p
n;i ¼ mi;n þ y

p
kv

p
i mmax

n;i � mmin
n;i

� �
; i ¼ 1; � � � ; I ; ð12Þ

where

y
p
k ¼ Tk tan p ap � 0:5ð Þð Þ

v
p
i ¼

bpi

PM
j¼1

bpj
� �2 !1=2

: ð13Þ

The superscript p refers to perturbation number; mi,n are the
current model parameters; ap and bi

p in equation (13) are
random numbers distributed uniformly in the interval (0, 1)
and (�1, 1), respectively. The vector (v1

p, . . ., vI
p) determines

the perturbation direction. The perturbation distance yk
p

depends on the temperature Tk and follows a one-
dimensional Cauchy distribution. Equation (12) is very
similar to the perturbation form used by Lane [1992] and Liu
et al. [1995]. It yields a perturbation to the current model (at
one node) that is uniformly distributed in direction and
Cauchy distributed in distance. In addition, the flat tail of
Cauchy distribution allows the inversion algorithm to escape
relatively easily from local minima in the search for the
desired global minimum. To limit the search to the
predetermined model space, the new model parameter mi,n

p

of Mn
p must lie on the interval (mi,n

min, mi,n
max). If not, a new

random variable ap is generated for this parameter until the
constraint is satisfied.
[30] After the perturbations to the current model param-

eters at node n are repeated P times, we get P new models
Mn

p and corresponding objective functions E(Mn
p). One of

the new models is then selected to update the current model.

To do this, first we calculate the change in objective
function Den

p from the current model M to the new model
Mn

p

DEp
n ¼ E Mp

n

	 

� E Mð Þ; ð14Þ

and we calculate the average value DEn,

DEn ¼
XP
p¼1

abs DEp
n

	 

: ð15Þ

Next we evaluate following cumulative probability Cp of
new model Mn

p

Cp ¼

Pp
j¼1

exp �
E Mj

n

	 

DEa

� �
PP
j¼1

exp �
E Mj

n

	 

DEa

� � ¼

Pp
j¼1

exp �DEj
n

DEa

� �
PP
j¼1

exp �DEj
n

DEa

� � ; ð16Þ

where DEa is the average of DEn over all the nodes during
previous iteration. Finally, we draw a random number g

from uniform distribution between 0 and 1. At the point j
where

Cj�1 � g < Cj; ð17Þ

a new model Mn
j is picked to replace the current model.

Thus M = Mn
j, and E(M) = E(Mn

p). Here we assume that
C0 = 0. In a complete iteration the current model is updated
N times because each node is examined once. At high
temperature, the strong perturbations result in a large value
of DEa and therefore, it is nearly random when selecting a
new model according (equations (16) and (17)). As the
temperature is lowered the model with the smallest value of
the objective function has a higher probability of being
selected.
[31] We have described in detail each element of the

algorithm. However, to implement the algorithm, there are
still several free parameters that need to be chosen properly:
the initial temperature T0, cooling rate h, the number of
perturbations P, and the number of iterations K. Often
physical insight and/or a significant amount of trial-and-
error runs are required to choose the values of these
parameters. Normally, the number of perturbations should
be at least twenty times larger than the number of source
parameters at a node, i.e., P 
 20I. For most cases that we
have explored, teleseismic and near-source inversions, an
initial temperature in the range 0.1–0.2 is sufficient. We
find that it is more efficient to preset a final temperature Tf
from which a cooling rate can be determined using equation
(10):

h ¼ Tf

T0

� �1
K

;

where the final temperature Tf is in the range 0.001–0.005.
[32] Our inversion procedure is one kind of global opti-

mization algorithm. Unlike a local inversion method, such
as linearized iterative least squares, it has the ability to
escape from local minima to find a global minimum.
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However, the cost for this desirable feature is that the
forward problem—which consists mainly of computing
synthetic seismograms—must be calculated a large number
of times. For example, in one iteration of the algorithm the
objective function is evaluated N � P times. Fortunately, the
computation of synthetic seismograms can be very fast in
our inversion procedure. As we pointed out earlier, when a
node is examined, only the current source parameters of this
node are perturbed P times. This node connects two to four
subfaults whose synthetics need to be recomputed each

time. The seismograms from the other subfaults are not
changed and can be reused during the perturbations. There-
fore, only a few computations are required to get the
synthetic seismograms from each newly generated model.

5. Application of the Inversion Procedure
to the Loma Prieta Earthquake

[33] The 1989 Loma Prieta M 6.9 earthquake occurred
in a region that was fairly well instrumented with strong-
motion accelerographs. Because strong-motion instru-
ments record data in the near-source region where
Green’s functions from different parts of the fault can
be very different, these data have the potential to resolve
detailed aspects of the rupture process. In addition, a
large number of teleseismic stations recorded this earth-
quake. The abundance of high-quality data provided one
of the best opportunities to study the rupture process of
Loma Prieta earthquake. Beroza [1995] compared four
finite fault source models of Loma Prieta earthquake
[Beroza, 1991; Hartzell et al., 1991; Steidl et al., 1991;
Wald et al., 1991]. Each of the studies finds low slip in
the hypocentral region and generally a bimodal distribu-
tion of slip with respect to the hypocenter. The seismic
moment ranges from 2.3 � 1019 to 3.5 � 1019 N-m,
spanning approximately the same range determined tele-
seismically at longer periods. Beroza [1995] also pointed
out the differences among the four models: the location
of the high-slip areas and, especially the rake differ
among the four models. He attributed the substantial bias
in the rake to the inadequacy of the synthetic Green’s
functions due to lateral variations in the velocity struc-
ture, and the differences in the slip distributions to
different data sets and frequency bands used for the
inversions. We suspect that the different velocity struc-
tures used in these four studies may be another reason for
the differences [Stidham et al., 1999]. To address this
issue and to demonstrate the applicability of the new
inversion procedure, we re-analyze the data from the
Loma Prieta earthquake.
[34] Because the FD technique requires a large computa-

tional effort, we selected only 16 stations (Figure 4 and
Table 2) in the near-source region of the earthquake. To

Table 2. Stations Used to Invert for Kinematic Parameters

Station Latitude, �N Longitude �W Epicentral Distance, km Owner TTimes-OTa

COR Coralitos 37.046 121.803 5 CDMG 5.2
CAP Capitola 36.974 121.952 10 CDMG NAT
UCS U.C. Santa Cruz 37.011 122.060 15 CDMG NAT
GOF Gilroy-Old Firehouse 37.009 121.569 30 CDMG 8.2
GGC Gilroy-Gavilan College 36.973 121.568 30 CDMG NAT
GI6 Gilroy Array #6 37.026 121.484 35 CDMG 10.8
SAR Saratoga 37.255 122.031 30 CDMG NAT
HOL Hollister (South and Pine St.) 36.848 121.397 50 CDMG 12.3
ASH Agnews State Hospital 37.397 121.952 45 CDMG 9.0
ADD Anderson Dam-Downstream 37.166 121.628 30 USGS 7.8
SLA Stanford-SLAC 37.419 122.205 50 USGA NAT
LEX Lexington Dam-Abutment 37.202 121.949 20 CDMG 5.9
CLD Coyote Lake Dam-Downstream 37.118 121.550 30 CDMG 9.3
HVL Halls Valley-Grant Park 37.338 121.714 35 CDMG 9.7
SAG SAGO South-Hollister 36.758 121.396 50 CDMG 15.0
SAL Salinas 36.671 121.642 45 CDMG 10.7

aDefinitions are as follows: OT, origin time at 00 04 15.21 GMT 18 October 1989; Ttime, trigger time of the instrument; NAT, no absolute time.

Figure 4. Map of the local region surrounding the Loma
Prieta earthquake. Inset shows the local area with respect to
the state of California. Fault projection to the Earth’s surface
is shown as the shaded area. A star denotes epicenter
location. Stations used to invert for the kinematic
parameters of faulting are shown as triangles. The locations
of three cross sections A-A0, B-B0 and C-C0 (Figure 5) are
indicated by dashed lines.
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examine the effect of the structure we invert these data using
both 1-D and 3-D Green’s functions. The 3-D Green’s
functions are calculated numerically using the 3-D velocity
and Q structure provided by T. M. Brocher (1999 written
communication). To illustrate the 3-D variability of the
velocity structure we show three cross-sections in Figure 5.
These Green’s functions are computed using a fourth-order
staggered grid FD code that includes new absorbing bound-
ary conditions and coarse-grained attenuation [Liu and
Archuleta, 1999]). We limit the maximum frequency to
1.0 Hz and the minimum S wave velocity to 1.0 km/s at
the Earth’s surface. Parameters of the 3-D FD calculation
are given in Table 3. The 1-D Green’s functions are
calculated from the velocity model used by Wald et al.
[1991]. Because there is no Q value in this 1-D model, we
assume QP = 2QS and QS = 0.1 VS, where the units of VS

are m/s. Both the observed data (particle velocities) and
Green’s functions are band passed in the frequency range
0.05–1.0 Hz. Some of the strong motion records do not

have trigger time information. For theses stations the
synthetic shear wave from hypocenter is aligned with the
first impulsive S wave in the data.
[35] We chose the same geometry for the fault as Wald et

al. [1991]—strike of 128�, dip of 70� to the southwest. The
fault measures 41.25 km in length and extends from a depth
of 1.5 km to 20.3 km, giving a down-dip width of 20 km.
The hypocenter is at 37.04�N, 121.88�W, with a depth of
18 km. For simplicity the fault area is discretized into
15 rectangular elements along strike and 8 elements down-
dip for a total of 120 subfaults of equal area (dimensions
2.75 km by 2.5 km). For each subfault we have 16 equally
spaced Green’s functions. These Green’s functions are
calculated by linearly interpolating from the eight nearest
points for which the Green’s functions were computed. These
are further bilinearly interpolated so that each subfault is
represented by 144 Green’s functions. The corresponding
source parameters are also calculated through bilinear inter-
polation. Synthetic seismograms are computed for 144 points
for each subfault and summed over all subfaults to produce a
synthetic time history.
[36] Each node has four model parameters: slip ampli-

tude, rake angle, rise time, and rupture velocity. We fix the
exponent p (equations (2) and (6)) at 1.5. Prior to inverting
the data we set bounds for the model parameters: slip
amplitude—0.0 to 7.0 m; rake angle—80� to 170�; rise-
times—0.6 to 6.0 sec; rupture time is bounded by the time
for the rupture to reach the node from the hypocenter with
the rupture velocity bound between 2.2 km/s to 3.5 km/s. In
this inversion, we set the Wc be zero, i.e., no smoothing or
minimum moment constraints are applied. The inversion
starts at a temperature of 0.2 and stops at a temperature of
0.005 with a maximum of 1500 iterations. For each node the
perturbation number is 70.
[37] To ensure that the inversion results are comparable,

both 1-D and 3-D inversions use exactly the same proce-
dure, data, source parameterization and constraint condi-
tions, except for small differences in timing shifts (0.5 s)
between the 1-D and 3-D Green’s functions to account for
the difference between the1-D and 3-D velocity structures.
A two-second time shift is used to account for the triggering
of the Loma Prieta earthquake by a small event that did not
trigger the strong motion accelerographs [Wald et al., 1991].
[38] The seismic moment from 1-D and 3-D inversion are

3.9 � 1019 and 4.3 � 1019 N-m, respectively. The larger
moment from 3-D inversion can be attributed to larger
attenuation in the 3-D structure. A comparison of the
observed and synthetic ground velocities is given in

Figure 5. Cross sections of shear wave velocity for three
profiles indicated on Figure 4. In Profile B-B0, the
hypocenter is shown as a white star. One can see the
difference in velocity across the San Andreas to a depth of
about 20 km in each profile. The local basins penetrate to
depths about 5 km. Velocity structure is the latest USGS
model (T. M. Brocher, personal communication). See color
version of this figure at back of this issue.

Table 3. Parameters Used in the Finite Difference Calculation of

the 3-D Green’s Functions

Parameter Value

Vs (min) 1000 m/s
Vp (min) 1700 km/s
Qs (min) 20
Qp (min) 50
Density (min) 1600 kg/m3

Grid spacing 180 m
Time step 0.02 s
Time window 20 s
Total time 35 s
fmax (Hz) 1.0

B02318 LIU AND ARCHULETA: FAULT INVERSION WITH 3-D GREEN’S FUNCTION

9 of 15

B02318



Figure 6. For each station we show the misfit between the
data and the synthetic, both 1-D and 3-D, based on the
objective function in equation (9a) (ignoring the additional
term related to constraints). The synthetic seismograms
from the 1-D inversion fit the data a slightly better than
that from 3-D inversion at most stations. We think that the Q
values given for the 3-D model are too low. In terms of total
CPU time recomputing the 3-D Green’s functions is no
trivial matter. Nonetheless, it appears that the fit to the data
could be improved with a higher Q in 3-D velocity structure

for the near-surface material. It is clear that there are local
effects that are not captured by even a 3-D model. There are
a few stations where the misfit is consistently large for all
three components, such as Hollister (HOL). As noted by
Wald et al. [1991] the amplitude of the velocity on the
perpendicular component is anomalous for the assumed
fault geometry. They suggest additional faulting on the
San Andreas southeast of the Loma Prieta fault zone.
Lexington Dam (LEX) is well fit for its largest signal,
perpendicular to strike, but substantially misfit on the

Figure 6. Comparison of observed velocity records (black thick lines) with the synthetics (gray thick
lines) for the 3-D inversion and the synthetics (black thin lines) for 1-D inversion. Station names are
indicated at the left. Peak amplitude of observation (cm/s) is given for each trace. Data and synthetics are
plotted on the same vertical scales.
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vertical and parallel components. The station SAR is about
5 km farther along strike from LEX, but all three compo-
nents are fairly well matched by the synthetics. It may be
that with the LEX station being sited on the abutment of the
dam affects the ground motion. Neither a 1-D or 3-D
velocity structure accounts for all the variation seen in the
data.
[39] The spatial distributions of slip amplitude, rake,

rupture time and rise time determined by 1-D and 3-D
inversions are shown in Figures 7 and 8, respectively. Both
inversions find a bimodal distribution of the slip with
respect to the center of the fault. There is very little slip
directly above the hypocenter. The two source models also
have very similar distribution of rake angle: the asperity
southeast of the hypocenter slips with a rake angle of
135�; the northwest asperity has a rake angle of 155�.
In addition to the similarities, large differences in the two
models can also be observed. In the 3-D model, the
southeast asperity has larger slip amplitudes of 4.0 m

compared to the slip amplitudes 3 m in the asperity
northwest of the hypocenter. The 1-D model has almost a
reversed picture. The maximum slip amplitudes in southeast
asperity is only 2.5 m, which is less than one half of the
slip amplitudes 5.5 m in the northwest asperity. The large
differences in slip distributions between 1-D and 3-D source
models can be attributed to lateral variations in velocity
structure.
[40] The time when a point starts to rupture is equal to the

distance between a point on the fault and the hypocenter
divided by the rupture velocity (found through inversion)
for this point. Contours of rupture times describe the
position of the rupture front on the fault (Figures 7 and 8).
In general the 3-D source model has a more heterogeneous
rupture velocity than that found for the 1-D model, although
both have a similar rupture velocity of 2.8 km/s. In general,
rise times cannot be well resolved by these inversions
because of the limited frequency band. Here we only
considered the rise times in the regions where the slip

Figure 7. Plots of (a) slip amplitude at 0.5-m contour
interval, (b) rake, (c) rupture time at 2-s intervals, and (d)
risetime at 0.8-s contours for the inversion using 1-D
Green’s functions.

Figure 8. Plots of (a) slip amplitude at 0.5-m contour
interval, (b) rake, (c) rupture time at 2-s intervals, and
(d) risetime at 0.8-s contours for the inversion using 3-D
Green’s functions.
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amplitude is large: we find about 1.0 s rise time in the 3-D
model and around 2.0 s in the 1-D model.
[41] In addition to comparisons with the 1-D inversion,

we also ran another 3-D inversion to evaluate the perfor-
mance of bilinear interpolation. In this inversion we use
50 subfaults (10 � 5) instead of 120. As shown in Figure 9,
the 50-subfault model is very similar to the 120-subfault
model (Figure 8). The 50-subfault model has smoother
distributions of source parameters as a result of its larger
subfault size. This comparison indicates that the bilinear
interpolation is working to reduce the effect of subfault size
on the inversion outcome.

6. Discussion

[42] While there has always been a strong effort to
determine Earth structure at every scale, the existing models
used in most inversions have significant uncertainty. Most
inversions that rely on comparing waveforms automatically

limit the maximum frequency that will even be attempted.
Even at frequencies less than 1.0 Hz the Green’s functions
calculated from models cannot represent exactly wave
propagation in the real Earth structure. Uncertainty in
structure model will significantly affect the synthetic seis-
mograms, in both phase and amplitude that in turn lead to
the variation in the inverted source model. The basic issue is
that the Earth structure is not well known but is almost
certainly heterogeneous in all three dimensions [Brocher et
al., 1997; Hauksson and Haase, 1997; Magistrale et al.,
2000]. Graves and Wald [2001] examined the effect of 3-D
versus 1-D Green’s functions by computing synthetic seis-
mograms from a hypothetical earthquake. They found that
an inaccurate velocity structure could strongly bias the
inverted slip distribution even when the rupture velocity,
rise time and rake angle are fixed. Ramos-Martı́nez and
McMechan [2001] found that the 3-D structural model for
San Fernando was significantly better for determining a
point source seismic moment, rake and dip than a 1-D
model. Although the 3-D structure will not be perfectly
known, we cannot assume that a 1-D approximation to the
Earth structure is a better model. Regardless of the structural
model being used, inaccuracies in the Green’s functions will
be mapped into the source parameters.
[43] In our inversion of data from the Loma Prieta

earthquake, both 1-D and 3-D inversions used exactly same
procedure, data, source parameterization and constraints,
such that the difference in the two source models results
only from the assumed structure models. While the overall
pattern of the source model from the 1-D Green’s function
inversion is close to that found from 3-D inversion, the
details of the two models are quite different (Figures 7 and 8).
Regions with maximum slip amplitudes (as well as the
rake) differ between the two models. We can also observe
that the synthetic seismograms calculated separately from
the two models fit the data equally well, although 1-D
synthetics fit the data better at many stations. These results
demonstrate that the global inversion method will find an
optimal solution for a given set of Green’s functions.
However, the differences between the 1-D and 3-D solu-
tions clearly demonstrate that some elements of source
complexity result from inexact knowledge of the Greens
functions. It can be expected that these effects will become
more evident as the size of the fault and rupture duration
increase. Considering the importance of Green’s functions
for source inversion and our limited knowledge of detailed
velocity structure, seismic waveform inversions for large
earthquakes should be based on the available structure
models (including 3-D models) for the region of interest.
Although we do not know which of these source models is
more accurate in describing the source process, quantifying
the difference among these models provides an estimation
of the uncertainty in the solution obtained by inverting the
data.
[44] The available information that can be used in the

finite fault inversion is not sufficient to determine a contin-
uous distribution of source process of large earthquake.
Thus finite fault inversions usually require parameterization
of the faulting process by dividing the finite fault into a grid
of subfaults. However there is no criterion to decide how
large a subfault should be. Normally a subfault is large
enough that the variations of source parameters within the

Figure 9. Plots of (a) slip amplitude at 0.5-m contour
interval, (b) rake, (c) rupture time at 2-s intervals, and
(d) risetime at 0.8-s contours for alternative 3-D inversion
using 50 subfaults instead of 120.
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subfault cannot be neglected. We apply the bilinear inter-
polation technique to describe these variations and find that
it works well. Based on this, it is natural to infer that a
higher order interpolation, such as a bi-cubic spline inter-
polation, may work even better. However, if a higher order
interpolation is adopted, synthetic seismic waveforms from
a subfault are no longer linearly related to the slip ampli-
tudes of each corresponding node. The higher order inter-
polation will also force a stronger spatial correlation among
the source parameters. Thus, determining even the slip
distribution becomes a problem that cannot be solved with
a linear least squares method, the favorite method used for
inverting for the spatial distribution of slip on a finite fault.
In addition, the non-linear relationship between the slip and
ground motion and the enhanced stronger correlation of the
source parameters makes the inversion process much more
difficult. Our numerical tests show that higher order inter-
polation makes the inversion converge much more slowly;
bi-cubic spline interpolation requires more than five times
the CPU time than the bilinear interpolation for the same
problem.
[45] Ide and Takeo [1997] proposed a different approach

to representing the spatial distribution of slip on the fault
plane. The slip distribution is expanded as linear combi-
nation of 2-D linear B-spline base functions. The expan-
sion coefficients are defined by the slip amplitudes on
knots distributed uniformly along the strike and dip
directions, respectively. While our subfaults are rectangular
elements of equal area and the locations of the subfault
nodes coincide with those of knots of the 2-D linear
B-spline, the two approaches give same representation of
slip distribution. However using bilinear quadrilateral
elements is more flexible for modeling the complex
rupture process. For example, we can assign the distribu-
tion of nodes so that the spacing between nodes is smaller
in the zones where the source parameters have the largest
variations. This will allow us to improve the resolution of
a finite fault model without increasing the number of free
parameters. This advantage will be explored in our future
research.
[46] The Loma Prieta inversions were done with exactly

the same method so that one can compare the results
based only on the differences resulting from 1-D versus
3-D Green’s functions. Of course, it is not surprising that
there are differences; the overall misfit is, in fact, less for
the 1-D inversion. While we are in no position to judge
which kinematic model more accurately reflects the earth-
quake, we have to accept that the velocity structure is
three-dimensional [Brocher et al., 1997; Stidham et al.,
1999]. Our preference is the inversion results using the 3-D
structure with the caveat that we think that the attenuation
given for the model was too large based on comparing the
synthetics with the data. The 1-D inversion results can be
compared with previous 1-D inversions for which 3-D
structure models were not available [Steidl et al., 1991;
Wald et al., 1991; Beroza, 1991, 1995]. Our 1-D model
reflects both differences between our global nonlinear
inversion and linear methods as well as the choice of the
stations used in the inversion [Wald et al., 1991; Beroza,
1995]. Beroza [1995] contrasted the various 1-D models;
we want to comment only on how our 1-D model differs or
is similar to that found by others.

[47] The distribution of slip (Figure 7) is more asymmet-
ric comparing the fault southeast of the hypocenter to that
northwest of the hypocenter than found in previous inver-
sions. While it may look like the results from Wald et al.
[1991], it is significantly different in that most of the slip
northwest of the hypocenter is dominated by dip-slip,
whereas Wald et al. [1991] had found primarily strike-slip
northwest of the hypocenter using only strong-motion data.
This distribution of slip is very different from Beroza
[1995], who found the largest slip southeast of the hypo-
center dominated by strike-slip motion. All of the models
based on strong-motion data resulted in areas of maximum
slip that are deeper than 10 km. Also, we find the regions of
maximum slip are concentrated 10 km or more along strike
from the hypocenter as did Steidl et al. [1991]. Models by
Wald et al. [1991] and Beroza [1991, 1995] generally put
the concentrations of slip within 10 km (measured along
strike) of the hypocenter. In our 1-D model the rake angle
dip slip motion dominates northwest of the hypocenter
while to the southeast there are nearly equal parts of
strike-slip and dip-slip. This is similar to Beroza [1991,
1995], Steidl et al. [1991] and the combined teleseismic and
strong motion model of Wald et al. [1991]. Of all the
models, our rake is similar to the combined teleseismic
and strong motion model of Wald et al. [1991] and to the
model of Steidl et al. [1991]. Our 1-D model is least like
that of Hartzell et al. [1991], who inverted for slip on the
fault using only teleseismic data. Their model is dominated
by strike-slip motion southeast of the hypocenter and is
concentrated at much shallower depths. All of the models
do have one common feature: the rise times are generally
less than 1.0 s.
[48] The primary differences between our 3-D and 1-D

models are (1) that the 3-D model distribution of slip is
more symmetric with nearly equal amplitudes northwest
and southeast of the hypocenter with slightly more
amplitude to the southeast and (2) the rake angle shows
that in the southeast there is significantly more dip-slip
motion. The maximum amplitude is 4.8 m for the 3-D
inversion as compared to 6.8 for the 1-D inversion. As in
the 1-D inversion there is almost no slip in the region
directly above the hypocenter giving a bimodal distribu-
tion (Figure 8). The rise times for the 3-D inversion are
still short, approximately 1.0 s or less in the regions of
maximum slip. The rupture velocity is different from the
1-D in detail, but the general pattern is symmetric with
respect to the hypocenter; both have an average rupture
velocity of 2.8 km/s.

7. Conclusions

[49] We have developed a procedure to perform finite
fault inversions. The problem of inverting seismic data for
the spatial distribution of slip amplitude, rupture velocity
and rise time on a fault is nonlinear. The global inversion
method presented here efficiently solves this problem. Our
approach requires only the value of the objective function,
not its derivative, and uses random processes to search the
model space to find the optimal solution. Throughout the
process the nonzero probability of strong perturbations to a
current model allow the method to escape from local
minima. Our application of this approach shows that the
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final solution is almost independent of the choice of the
starting model. Cotton and Campillo [1995] using a linear-
ized, iterative technique to solve a similar nonlinear prob-
lem also found a slight dependence of the solution on the
starting model. Another advantage of the global inversion
method is that many physical constraints about the model
parameters are easily incorporated into the inversion. We
find that it is necessary to consider the variations of source
parameters within a subfault. The bilinear interpolation
provides an efficient way to account for these variations.
It mitigates the dependence of finite fault inversion on the
choice of subfault size.
[50] Using identical numerical parameters and method

we inverted near-source data from the Loma Prieta
earthquake using both 1-D and 3-D Green’s functions.
Both Green’s functions result in source models that
produce synthetics that match the data with almost the
same misfit in the objective function with the 1-D model
producing a slightly smaller misfit. In practice, we do not
know which Earth model more accurately represents the
real structure, but this region has 3-D structure that
penetrates to depth including variation of the velocity
on different sides of the San Andreas (Figure 5 [Brocher
et al., 1997; Stidham et al., 1999]). A prudent approach
is to use each Earth model that is available to deduce the
range of possible faulting models and look for the
elements that are common to the different Earth models
[Hartzell, 1989; Graves and Wald, 2001]. Here we find
the common elements are that slip northwest of the
hypocenter is deep and dominated by dip-slip; slip
southeast of the hypocenter has a strong component of
strike-slip; the rise time on the fault is less than 1.0 s; the
rupture velocity is about 2.8 km/s.
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Figure 5. Cross sections of shear wave velocity for three profiles indicated on Figure 4. In Profile B-B0,
the hypocenter is shown as a white star. One can see the difference in velocity across the San Andreas to a
depth of about 20 km in each profile. The local basins penetrate to depths about 5 km. Velocity structure
is the latest USGS model (T. M. Brocher, personal communication).
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