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Efficient Modeling of Q for 3D Numerical Simulation of Wave Propagation

by Pengcheng Liu and Ralph J. Archuleta

Abstract The effects of Q are currently incorporated into numerical time-domain
simulations of wave propagation by using a set of discrete relaxation functions. The
behavior of these relaxation functions is controlled by the selection of the weight
coefficients and relaxation times. In this article we present an approach to determine
these parameters efficiently and accurately. In our approach we first determine two
sets of weight coefficients and one set of relaxation times to model the smallest and
largest target Q. We then derive an empirical formula to interpolate the weight co-
efficients for modeling an arbitrary Q that can be a function of frequency. A single
set of relaxation times is used for any Q. We have considered two cases: (1) the
complex viscoelastic material modulus is computed by directly summing of relaxa-
tion functions; (2) the modulus is implicitly represented as the harmonic average of
the viscoelastic modulus given by individual relaxation functions. For large Q (�50),
both approaches can be applied to coarse-grained system presented by Day and Brad-
ley (2001). However, for lower Q, the second case works better.

Introduction

The intrinsic attenuation of seismic energy (often quan-
tified by the quality factor Q) is an important consideration
in the simulation of wave propagation. Although there is
no difficulty incorporating an arbitrary Q, such as the
frequency-independent Q of Kjartansson (1979) or the
frequency-dependent Q of Müller (1983), into a frequency-
domain simulation method, we are interested in including
the Q effect in a time-domain simulation method, because
such methods can simulate wave propagation in a complex
medium. Currently Q is incorporated into time-domain nu-
merical simulations by introducing additional memory vari-
ables (Day and Minster, 1984; Emmerich and Korn, 1987;
Blanch et al., 1995; Day and Bradley, 2001; Graves and
Day, 2003).

In using memory variables, the attenuation and disper-
sion effects of Q are approximated by a set of relaxation
functions. The linear combination of relaxation functions
represents the modulus reduction from the unrelaxed mod-
ulus at time zero to the relaxed modulus at infinite time. The
behavior of each relaxation function is simply controlled by
a weight coefficient and a relaxation time. The more relax-
ation times that are used, the more accurate is the modeling
of Q as a function of frequency. However, the number of
different relaxation times is directly proportional to the num-
ber of memory variables; this proportionality directly affects
the storage and computation time of the numerical methods.
As an alternative to using many additional variables, Day
(1998) and Day and Bradley (2001) presented a coarse-
grained method that uses only one memory variable for each
stress component of each node. This method dramatically

reduces storage requirements, but it introduces an artificial
heterogeneity of the material modulus when the value of Q
is very small. This undesired feature may degrade the ac-
curacy of simulation of wave propagation (Graves and Day,
2003). Recently Graves and Day (2003) improved the per-
formance of the coarse-grained method by using an element-
specific unrelaxed modulus and an effective modulus, which
is the harmonic average of the viscoelastic moduli over the
coarse-grain unit. Moreover, in practical simulations of wave
propagation the complex medium often contains more than
tens of thousands of different Q values. Determining and
storing the relaxation times and weight coefficients for these
Qs is not a negligible task for most computers. To determine
the weight coefficients efficiently, the low-loss approxima-
tion is often made for the modeling Q (e.g., Emmerich and
Korn, 1987; Blanch et al. 1995; Day, 1998; Day and Brad-
ley, 2001). If low Q values are included in a simulation, this
approximation can be expected to result in notable error.

In this article, we extend and improve the procedure of
Liu and Archuleta (1999) that determined the relaxation
times and weight coefficients of the relaxation functions
based on arithmetic averaging of the viscoelastic moduli. In
the procedure that we develop later, we use one identical set
of relaxation times for modeling different Qs; we optimize
two sets of weight coefficients and the set of relaxation times
to fit simultaneously the smallest and largest target Q (Qmin

and Qmax). The weight coefficients for an arbitrary Q be-
tween Qmin and Qmax are interpolated in terms of an empir-
ically derived relationship. We then apply this procedure to
determine the relaxation times and weight coefficients when
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the coarse-grained technique is implemented in the numer-
ical simulation. In this case, the Qs are simulated using the
harmonic average of the viscoelastic moduli over the coarse-
grain unit. This procedure allows one to model both fre-
quency-independent and frequency-dependent Q. In most
cases we can simulate constant Q within 5% tolerance over
three decades in frequency. The results we present here can
be directly adapted to finite-difference algorithms with min-
imal storage requirements and minimal increase in compu-
tation.

Basic Formulas for Modeling Q

To incorporate the effects of Q into timestepped nu-
merical simulations of wave propagation, a set of particular
relaxation functions are chosen (e.g., Day and Minster, 1984;
Emmerich and Korn, 1987) such that the complex, fre-
quency-dependent, viscoelastic modulus M(x) is approxi-
mated as,

N wkM(x) � M 1 � , (1)u �� �1 � ixsk�1 k

where Mu is the unrelaxed modulus; N is the number of
relaxation times sk or weight coefficients Wk. In this case, as
shown by Day and Minster (1984), the stress r and strain e
has the relationship

N

r(t) � M e(t) � y , (2)u � k� �
k�1

where yk is the memory variable. The memory variables fol-
low first-order differential equations (e.g., Day and Minster,
1984; Emmerich and Korn, 1987):

dy (t)k
s � y (t) � w e(t) . (3)k k kdt

The difference solutions of these equations are of the form
(Day, 1998)

y (t � Dt/2) � exp(�Dt/s )y (t � Dt/2)k k k

� w [1 � exp(�Dt/s )]e(t), (4)k k

where Dt is the timestep used in numerical calculation. We
prefer to use exp(�Dt/sk) in equation (4) rather than its first
diagonal Padé approximant, (1 � 0.5Dt/sk)/(1 � 0.5Dt/sk),
because the latter can be negative when the relaxation time
sk is very small.

Equation (2) provides a practical way to incorporate
anelastic attenuation into the time-domain numerical simu-
lation by introducing memory variables yk. Equation (4)
gives the approximate solutions of yk, which are specified
by sk and wk . The accuracy of wave propagation with atten-
uation when using equation (2) depends on how well sk and

wk are determined. In the following text and in the next sec-
tion we present a procedure that uses an empirical interpo-
lating relationship to calculate sk and wk.

We use the definition of Q suggested by O’Connell and
Budiansky (1978), and equation (1), to express the fre-
quency-dependent Q as

N wk1 � � 2Re M(x) 1 � (xs )k�1 kQ(x) � � (5)
NIm M(x) w xsk k� 21 � (xs )k�1 k

The simulated annealing algorithm of Liu et al. (1995) is
used to find simultaneously N pairs of sk and wk by mini-
mizing the difference of a synthetic Q(x) given by (5) and
a target Q(x) model. Here we extend and improve this tech-
nique such that we can determine all sk and wk efficiently
for different Qs. To do so, we first choose a minimum Qmin

and a maximum Qmax. We assume that a single set of relax-
ation times sk can be used to simulate different Qs. Applying
the simulated annealing algorithm (Liu et al., 1995), we op-
timize two sets of wk and one set of sk to fit simultaneously
Qmin and Qmax. Having the weight coefficients for Qmin

minQwk

and for Qmax, the weight coefficients for any con-maxQ Qw wk k

stant Q between Qmin and Qmax are interpolated by using an
empirical formula that is obtained through numerical tests.

From a practical point of view, we set Qmin � 5, Qmax

� 5000, N � 8, and the modeling frequency band 0.01–50
Hz. In this case, the weight coefficients for a given Q areQwk

calculated using the interpolation formula

Qw � v(v� � b ), (6a)k k k

where the values of �k and bk are listed in Table 1. They are
linear combinations of the weight coefficients andminQwk

. Although directly using and to inter-maxQ minQ maxQw w wk k k

polate looks more straightforward, equation (6a) is moreQwk

efficient for computation. The factor v depends only on Q
and is estimated by

�1.1583.071 � 1.433Q ln(Q/5)
v � ,

1 � 0.415Q
5 � Q � 5000. (6b)

This formula was found by first deriving an analytical ex-
pression under many simplifying assumptions and then mod-
ifying the analytical expression based on the fit between the
synthetic Q and the target Q. To verify the accuracy of the
interpolation, we compute a series of synthetic Qs using
equation (5). The frequency band is 0.01–50 Hz. These cal-
culations use one set of relaxation times listed in Table 1.
The weight coefficients are obtained from equation (6). In
Figure 1 we plot the synthetic Qs and various target values
of Q. Every synthetic Q (from 5 to 5000) fits the target value
very well, although the fit is a little worse for large Q because
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Table 1
Coefficients for Modeling Q, Equations (5) and (6)

k sk �k bk

1 1.72333 � 10�3 1.66958 � 10�2 8.98758 � 10�2

2 1.80701 � 10�3 3.81644 � 10�2 6.84635 � 10�2

3 5.38887 � 10�3 9.84666 � 10�3 9.67052 � 10�2

4 1.99322 � 10�2 �1.36803 � 10�2 1.20172 � 10�1

5 8.49833 � 10�2 �2.85125 � 10�2 1.30728 � 10�1

6 4.09335 � 10�1 �5.37309 � 10�2 1.38746 � 10�1

7 2.05951 �6.65035 � 10�2 1.40705 � 10�1

8 13.2629 �1.33696 � 10�1 2.14647 � 10�1

Figure 1. The fit between model Q (solid line) and
the target Q(x) (dashed line). Model Q is calculated
using equation (5). The relaxation times or weightsk

coefficients wk are obtained from Table 1 by use of
equation (6).

we have given more weight to fitting the minimum Q. The
misfits are less than 4% from 0.02 to 50 Hz. The largest
misfits are within 8% tolerance at about 0.01Hz for very
large Q.

Besides the calculation of relaxation times and weight
coefficients, the other consideration in modeling Q is the
determination of the unrelaxed modulus Mu (equation 1 or
2). A material velocity c used in numerical simulation is the
phase velocity normally observed at specified reference fre-
quency xr. The corresponding material modulus M0 is rep-
resented as

2M � c q , (7)0

where q is the density. Mu is the modulus at infinite fre-
quency, however, and it corresponds the initial value of the
relaxation function and should be greater than the M0 given
by equation (7). Following the work of Day and Bradley
(2001), we determine the Mu in a way that the modulus from
equation (1) at frequency xr is equal to M0. With this con-
sideration, we combine equations (1) and (7) to give a ex-
pression for the unrelaxed modulus:

N wk2M � c q 1 � . (8)u ��� �1 � ix sk�1 r k

Where there is no information that gives the frequency at
which the velocity model is known, the value of 2p (1 Hz)
is not a bad choice for xr .

Kjartansson (1979) presented a model to simulate fre-
quency-independent Q. The modulus of this model has the
form

�12arctanQ /pM(x) � M (ix/x ) (9)0 r

where xr is the reference (angular) frequency. Although this
model is hard to implement in time-domain numerical sim-
ulations, it exactly represents a constant Q model. We cal-
culate the modulus at different frequencies from this model
and the modulus from equation (1) for a constant Q of 10.
Comparisons of the two-computed moduli M(x) are shown
in Figure 2. The real and imaginary components of both
moduli are almost identical. These features confirm that our
interpolating procedure correctly models constant Q.

Although Day and Bernard (1984) derived equation (1)
for general Q functions, it has only been applied to model
constant Q in the time-domain computations (e.g., Emmer-
ich and Korn, 1987; Blanch et al., 1995; Day and Bradley,
2001; Graves and Day, 2003). Through numerical tests, we
find that if we properly optimize both the weight coefficients
and the relaxation times, we can correctly model frequency-
dependent Q and frequency-independent Q. Figure 3 shows
an example of modeling frequency-dependent Q(x). The
solid lines represent simulations and the dashed lines are
given by

Q , x � x0 c
qQ(x) � , (10)x�Q , x � x0 c� �2p

where, Q0 � 20; xc � 2p; the power p is 0.5 and �0.5 in
Figures 3a and b, respectively. The weight coefficients for
different frequency-dependent Qs can also be interpolated
using a formula similar to equation (6), as long as these Qs
are described with a common xc and power p.

Directly applying equation (2) to a time-domain nu-
merical method, such as the finite-difference (FD) method,
one finds that N memory variables are needed for each stress
component in each cell. In practice N should be four or
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Figure 2. The complex viscoelastic modulus (top,
real component; bottom, imaginary component) are
plotted versus frequency. The solid lines are compo-
nents of the modulus from Kjartansson (1979).
Dashed lines are calculated from equation (1). Both
moduli are normalized by M0 with the assumption that
the reference frequency is 1 Hz.

Figure 3. An example showing where the model
Q increases (a) or decreases (b) as a function of fre-
quency. The dashed lines are calculated from equation
(10). Solid lines are the model results.

greater to accurately model constant Q over three decades
in frequency (Emmerich and Korn, 1987; Day and Bradley,
2001). In the next section we derive a formula to calculate
the relaxation times sk and weight coefficients wk that can
be used in the coarse-grained system devised by Day (1998)
to reduce the number of required memory variables.

Modeling Q for Implementing Coarse-Grain
Memory Variables

Following the coarse-grained method (Day, 1998; Day
and Bradley, 2001), eight pairs of relaxation times and
weight coefficients are used to approximate the relaxation
functions or Q given by equation (5), but only one pair is
assigned to a unit cell of a 3D FD algorithm. So the modulus
at a unit cell is expressed as

¢wkM (x) � M 1 � (11)k u� �1 � ixs̄k

In (11), represents the relaxation time; w¢k represents thesk

weight coefficient; the subscript k is a number between 1
and 8 that depends on the location (p, q, r) of the unit cell,
where p, q, and r are the indices of the cell in the three
directions of FD system, respectively. Day (1998) gives a
simple formula to determine the practical value of k, that is
k � 1 � (p mod 2) � 2(q mod 2) � 4 (r mod 2). Similar
to equation (2), stress at the cell is given by

r(t) � M [e(t) � y ]. (12)u k

The solution of memory variables is same as equation (4)yk

for yk, but with and replacing sk and wk:s ¢wk k

y (t � Dt/2) � exp(�Dt/ s̄ )ȳ (t � Dt/2)k k k

� ¢w [1 � exp(�Dt/s̄ )]e(t). (13)k k

To determine and used in equations (11) and (13),¢w sk k

we need the average modulus over the coarse-grained vol-
ume that contains eight adjacent unit cells (3D case). In the
conventional coarse-grained method, the average modulus is
calculated by equation (1). As noted by Graves and Day
(2003), however, the harmonic average of the modulus
works better for the coarse-grain system. Following the work
of Graves and Day (2003), we express the average modulus
over the coarse-grained volume as

�18 1
M(x) � 8 , (14a)�� 	M (x)k�1 k

or

�18 a bk kM(x) � 8M � i , (14b)u �� � 2 2 2 2�	a � b a � bk�1 k k k k

where

¢w xs̄ ¢wk k ka � 1 � , b � 1 � (14c)k k2 2 2 21 � x ¢w 1 � x ¢wk k

Given the modulus and the preceding equa-2M(x ) � c qr
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Table 2
Coefficients for Modeling Q, Equations (14)–(16)

k sk �k bk

1 7.95929 � 10�3 1.89599 � 10�2 8.50577 � 10�2

2 7.96067 � 10�3 1.31638 � 10�2 1.13676 � 10�1

3 3.28661 � 10�2 1.55379 � 10�2 1.36285 � 10�1

4 1.38501 � 10�1 1.57445 � 10�2 1.43302 � 10�1

5 5.41466 � 10�1 2.30073 � 10�2 1.25200 � 10�1

6 1.97729 2.09506 � 10�2 1.43108 � 10�1

7 12.2426 3.42489 � 10�2 1.04466 � 10�1

8 12.2427 2.38454 � 10�2 1.45809 � 10�1

Figure 4. The fit between model Q (solid line) and
the target Q(x) (dashed line). Model Q is calculated
by using equation (15). The relaxation times orsk

weight coefficients are obtained from Table 2 by¢wk

use of equation (16).

tions, a formula similar to equation (9) can be easily derived
for the calculation of the unrelaxed modulus Mu.

Having the complex average modulus, the correspond-
ing Q(x) can be written as

Re M(x)
Q(x) � (15)

Im M(x)

Applying the aforementioned technique, and are then¢w sk k

obtained by finding the best fit between the synthetic Q(x),
given by equation (15), and the target Q. Because most FD
or finite-element simulations of wave propagation are lim-
ited to low frequencies—in general, less than 2 Hz for 3D
problems, we restrict the frequency-independent Q to the
range 0.01–10 Hz. Again we set Qmin � 5, Qmax � 5000.
The computed relaxation times are listed in Table 2. Simi-sk

lar to equation (6), an interpolation formula is found for the
calculation of the weight coefficients for any Q betweenQ

¢wk

Qmin and Qmax, which is also of the form

Q
¢w � v(v�̄ � b ), (16a)k k k

where the values of and are listed in Table 2; the factor�̄ bk k

is calculated byv

�0.535.649 � 0.477 Q ln(Q/5)
v � ,

1 � 0.109Q
5 � Q � 5000. (16b)

We have calculated different Q(x) values using equa-
tions (14) (15) (16) and the values listed in Table 2; the
different Q(x) values are plotted in Figure 4. The solid lines
represent simulations and the dashed lines are targets. Al-
though the Q(x) formula (equation 14) derived from the
harmonic average modulus is more complex than that given
by equation (5), the required weight coefficients are accu-
rately determined through interpolation. Figure 4 shows that
each model of Q(x) has a very good agreement with its
target value over the frequency range 0.01–10 Hz. The larg-
est misfit is less than 6% for any frequency.

Numerical Example

We incorporate the aforementioned technique of mod-
eling Q into a FD algorithm by using the coarse-grained
method of Day and Bradley (2001). We demonstrate the
modeling accuracy by simulating wave propagation in a 1D
earth structure. The FD simulations are compared with the
solutions obtained by a frequency wavenumber (FK) method
(Zhu and Rivera 2002). We have modified this FK code to
use either equation (1) or equation (9) to incorporate Q. Both
modified FK methods generate the same solution.

We now compute seismograms using the fourth-order
staggered-grid velocity-stress FD method (Liu and Archu-
leta, 2002) for the same test problem used by Graves and
Day (2003) that is now described. A double-couple point
source with strike � 90�, dip � 90�, rake � 0�, and a depth
of 2 km is specified with a moment-rate function given by

M (1 � cos(2pt/T)) /T, 0 � t � T;0
Ṁ(t) � (17)�0, otherwise,

where T � 0.2 sec and M0 � 1016 N m. The observation
point is located at the surface at a distance of 5 km and at
an azimuth of 143�. In our FD calculation, the minimum grid
spacing is 0.1 km and the timestep is 0.008 sec. With this
grid spacing, the model has five grids per minimum shear
wavelength at the upper-frequency limit of 1.0 Hz. The ve-
locity seismograms from FD and FK methods are low-pass
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Figure 5. We compare FD (dashed line) and FK
(solid line) seismograms for a three-layered Earth
model problem (see text). A reference frequency of 1
Hz is used for calculating the unrelaxed modulus. All
seismograms are low-pass filtered with a corner fre-
quency of 1 Hz.

filtered with a corner frequency of 1.0 Hz. The seismograms
from the FD and FK methods are compared in Figure 5. In
the FD simulation, the interfaces of layered velocity structure
model at depths 0.55 km and 1.55 km will pass through the
grid cell of FD system. The Q-values for these grid cells are
determined through interpolation (see Table 3). They are QP

� 13.33 and QS � 6.67, at a depth of 0.55 km; QP � 33.33
and QS � 16.67, at a depth of 1.55km. The weight coeffi-
cients for all Qs, except Q � 5, are obtained from equation
(16). The excellent agreement between the waveforms
shown in Figure 5 demonstrates the accuracy of the mod-
eling of Q by using simple interpolation.

Conclusions

We have developed an approach to determine the relax-
ation times and weight coefficients required by the widely
used Q-modeling methods for time-domain wave propaga-
tion (Day and Minster, 1984; Emmerich and Korn, 1987;
Blanch et al., 1995; Day and Bradley, 2001). We have also
provided two formulas to interpolate the weight coefficients
for any Q between 5 and 5000. One is based on an arithmetic

average of the modulus; the other is based on a harmonic
average. For each case, one set of relaxation times is given.
This technique can properly optimize both weights and re-
laxation times to model correctly frequency-dependent Q
and frequency-independent Q.

We have verified the modeling accuracy of Q by incor-
porating equation (16) into a FD code that implements the
coarse-grained method of Day and Bradley (2001). Our nu-
merical test example confirms that harmonic average mod-
uli, suggested by Graves and Day (2003), works very well
to model Q when using a coarse-grained FD method, even
for very low Q.
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