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Abstract Empirical data suggest that peak ground acceleration (PGA) and peak
ground velocity (PGV) saturate as a function of magnitude for large magnitude rup-
tures close to the fault. Because data are sparse in the near-source region of large
magnitude events, we have explored this question by simulating large magnitude
strike-slip earthquakes. We use kinematic simulations to generate ground motion
for a strike-slip fault that has a large aspect ratio (length/width). We consider both
homogeneous or heterogeneous rupture models. We find that close to the fault along
strike profiles of PGVand PGA increase to a maximum at a certain epicentral distance
and then decrease to an asymptotic level beyond this distance. Critical factors for
predicting ground motion are the position of an observer along strike, the depth
of the hypocenter below the top of the fault, and the ratio of rupture velocity to
shear-wave velocity. To understand the cause of the amplitude variation of along strike
profiles of PGVand PGA, we use the isochrone method and the concept of the critical
point to investigate how the geometry and kinematic parameters interact to produce
the computed ground motion. We construct a predictor based on the critical point that
does well in predicting the position of the maximum of PGVand PGA for stations close
to the fault. For heterogeneous rupture models we find that the behavior is more
complex though the general observation that along strike profiles of PGV and PGA
increase to a maximum and then decrease still holds. This has implications for
empirical attenuation relationships that essentially average the ground motion for
all stations along strike with the same distance to the fault.

Introduction

One of the most important questions in seismic hazard
assessment is how ground motion measures such as peak
ground velocity (PGV) and peak ground acceleration (PGA)
scale with magnitude. Recent empirical studies (Cua, 2004;
Abrahamson and Silva, 2008; Boore and Atkinson, 2008;
Campbell and Bozorgnia, 2008; Chiou and Youngs, 2008)
find that PGA saturates with increasing magnitude, as sta-
tions get closer to the fault, whereas PGA increases with mag-
nitude for stations farther away from the fault. That is, there
is a distance dependent saturation of PGA with magnitude
∂a=∂M � f�r� (Rogers and Perkins, 1996). This is illus-
trated in Figure 1 (Boore and Atkinson, 2008). That is,
for a fixed station with a small rupture distance (for example,
1 km), the PGA from an event with Mw 7 and from another
event with Mw 7.5 will be the same; however, for a fixed
station farther away (for example, 10 km), the PGA will
be different for those two events (not shown in Fig. 1). In
the following we will refer to this as distance dependent mag-
nitude saturation. In this study we focus on the saturation of
PGA and PGV (PGV does not fully saturate but does show a

decreased magnitude scaling close to the fault) with magni-
tude as shown in Figure 1.

There are many possible reasons for the observation of
saturation of peak ground motion with magnitude. It could be
caused by the dynamics of the earthquake rupture itself or by
the geometry, for example, the aspect ratio, of large events, or
it could be a sampling problem that results from having only
a few near-source observations for large magnitude events.
One approach for resolving this question is to use numeri-
cal simulations of earthquake ruptures. Rogers and Perkins
(1996) used a finite fault statistical model to confirm the ob-
served magnitude scaling. In their model the scaling arises
from two principal sources: (1) isochrones that get longer
for larger magnitudes yielding larger peak values and (2) ex-
treme value properties because the number of patches with
which the fault is constructed increases for larger magni-
tudes. Both effects yield larger ground motions for larger
magnitudes at a given distance that is not too close to the
fault. Close to the fault saturation occurs with magnitude be-
cause “only the closer portions of the fault dominate, almost
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regardless of total rupture length” (Rogers and Perkins,
1996). Anderson (2000) also finds distance dependent mag-
nitude saturation using different modeling techniques (com-
binations of empirical or theoretical Green’s functions and a
simple or composite source representation). He concludes
that the dependence of magnitude scaling with distance is a
result of the Green’s functions that are more complex and
have a longer duration for larger distances from the fault.

In this study we compute ground motion for long strike-
slip earthquakes using a kinematic source model (Liu, et al.,
2006). We use isochrones (Bernard and Madariaga, 1984;
Spudich and Frazer, 1984) to analyze the computed ground
motion. Isochrones are the locus of points on the fault that
radiate elastic waves all of which arrive at a given station at
the same time. Each station has a different isochrone distri-
bution; that is, each station sees different parts of the fault at a
given time. Hence, isochrones can be used to extract that part
of the rupture that produces a peak in the ground motion for a
given station.

We analyze ground motions computed for homogeneous
and heterogeneous earthquake sources using isochrones and
discuss the implications that the distribution of ground mo-
tion has on empirical attenuation laws.

Geometry and Homogeneous Kinematic Model

First, we construct a simple kinematic source model
for a strike-slip event with Mw 7.4 having constant slip,
rise time, and subshear rupture velocity vrup � Cβ, where
C � 0:8 and β is the shear-wave velocity on a fault in a
homogeneous elastic half-space. We use the slip rate function
by Liu et al. (2006) with a rise time of 1.85 sec. It allows slip

at only one time and has a smoother shape than formulations
using triangles that yield more high-frequency radiation.
The Green’s functions are computed up to 10 Hz using
the frequency-wavenumber (f-k) method (Zhu and Rivera,
2002). The vertical fault plane extends from 0.1 km below
the surface to a depth of 15 km. The fault length is 115.5 km.
The hypocenter is at a depth of 10.1 km. The elastic half-
space has shear-wave velocity β � 2:7 km=sec, P-wave ve-
locity α � 4:7 km=sec, and density ρ � 2500 kg=m3. Rows
of stations are distributed at the free surface parallel to the
fault where XS denotes the along strike distance from the
epicenter (spacing between stations is 2.5 km) and at various
distances measured perpendicular to the strike, y � 2:5, 5,
10, 15, 20, and 25 km (Fig. 2).

Isochrone Theory and the Critical Point

For a given station and a single point on the fault, an
arrival time (or isochrone time) is the sum of the time it takes
the rupture front to reach a point on the fault plus the travel
time from that point to the receiver. Isochrones (Bernard and
Madariaga, 1984; Spudich and Frazer, 1984) are, thus, lines
on the fault that connect the locus of points on the fault all of
which have the same arrival time. The concept is illustrated
in Figure 3 for two stations. Because each station has a dif-
ferent isochrone distribution, each observer on the surface
sees different parts of the rupture at different times. For a
given station, the area between two isochrones contours, cor-
responding to a time t and t� δt, radiates elastic waves that
arrive at the corresponding station within the time increment
δt. In Figure 3, note that, as the rupture approaches the sta-
tion, the isochrones between the hypocenter and the station
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Figure 2. Geometry used in kinematic calculation. The vertical fault is the gray area. The black dot on the fault marks the hypocenter. As
an example, if the lighter station is chosen, the dark gray point on the top of fault is the critical point (schematically) for that station (see text
for explanation of critical point).H is the distance from the top of the fault to the hypocenter; h is the distance from the free surface to the top
of the fault; y is the perpendicular distance from the strike to a line of stations parallel to the fault strike; and Xs is the distance measured from
the epicenter along strike.

Figure 3. Top to bottom: Rupture time, travel time, and isochrone distribution for two different stations (black dots). While the rupture
time distribution is the same for both, the travel times and hence the isochrone distributions are different. Isochrones are the locus of points
that radiate elastic waves (P or S waves) that arrive at the station at the time corresponding to the time of the isochrone contour.
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are widely spaced, encompassing large areas of the fault;
whereas once the rupture front has passed the station, the
isochrones are very closely spaced with a corresponding de-
crease in the area swept out in each δt. As the rupture front
moves toward the station, the widely spaced isochrones are
collecting radiation from large areas of the fault, and all this
radiation is arriving in a short amount of time leading to large
amplitudes, that is, directivity. Furthermore, between the hy-
pocenter and the station there is strong deceleration and ac-
celeration of the isochrones that will also produce strong
radiation (see equation 1 and the following explanation).

According to isochrone theory, a strong phase is radiated
from the isochrone that is tangent to a barrier because the
isochrone gets discontinuous at this point (Bernard and
Madariaga, 1984). To give more insight into why that is, we
plot the isochrone contribution (following explanation) for a
homogeneous rupture model as a function of time together
with the ground acceleration (Fig. 4) computed using the

simple kinematic model for an Mw 7.4 strike-slip event de-
scribed previously. To compute the isochrone contribution,
we divide the fault into many subfaults and calculate the
isochrone time for each subfault. Then we count the number
of subfaults that fall into a time increment of 0.1 sec and
multiply the number of subfaults by the area of each subfault.
Hence, the isochrone contribution can be understood as the
area that radiates elastic waves (in this example, S waves)
that arrive at the station in a given time increment. First,
the area is increasing as the isochrone’s length, and velocity
grows as the rupture propagates toward the station, that is,
directivity. But once the isochrone becomes tangent to the
top of the fault, future isochrones are discontinuous and do
not add area in the upward direction resulting in a sharp de-
crease in the isochrone contribution (or a change of area).
This abrupt change in the isochrone contribution when the
isochrones get discontinuous is associated with a peak in the
recorded ground velocity/acceleration. We will call the point
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Figure 4. Left: Isochrone distribution for three different stations (y � 5 km) along strike. Right: We show (1) computed ground accel-
eration (FN component) in black, (2) computed isochrone contribution (area between two isochrone contours that are 0.1 sec apart) in gray,
and (3) 1=R, R being the mean distance to the isochrone, as dashed curves. No scale is given for 1=R; it is plotted to get an idea of the relative
amplitude of this term at different times. The peak occurs when the isochrone passes the station because this is the closest isochrone. Note that
the FN component has a node in the radiation pattern for the closest isochrone.
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at which the isochrone is first tangent to the top of the fault
the critical point following Bernard and Madariaga (1984);
this point can be associated with a peak in the computed
ground acceleration. This peak can be identified for all three
stations. However, because this peak is radiated from an ear-
lier part of the rupture, geometrical spreading, that is, 1=R,
where R is the distance from each point on the isochrone to
the station, attenuates this peak for more distant stations.

The representation theorem (equation 1), as written
by Spudich and Frazer (1984) and modified by Zeng
(1991), clearly shows why ground acceleration for a homo-
geneous rupture is proportional to the change in isochrone
contribution:

â �up�x; t� � � �fr�t��
Z
y�t;x�

�
dsr
dq

Gp
ac2 � sr

dGp
a

dq
c2

� srG
p
a
dc

dt
� κsrG

p
ac2

�
dl: (1)

In equation (1) the component of ground acceleration in
the direction â resulting from wave type p is the convolution
of the time derivative of the slip velocity time function _f and
the integral along the isochrone over the sum of four terms:
(1) the product of spatial change of slip s on the fault and
the k component of the Green’s function G, scaled by the
squared isochrone velocity; (2) the spatial change of the
Green’s function times the slip on the fault, scaled by
the squared isochrone velocity; (3) the slip on the fault times
the Green’s function, scaled by the temporal change of the
isochrone velocity; and (4) a term that is the product of the
curvature κ of the isochrone, the squared isochrone velocity,
the Green’s function, and the slip. The isochrone velocity can
be computed as the inverse of the norm of the spatial gradient
of the isochrone time (Spudich and Frazier, 1984). Therefore,
the widely spaced isochrones that run toward the station
(Fig. 3) correspond to a large isochrone velocity. Note, that
even though the rupture velocity is constant, the isochrone
velocity is not.

Hence, besides spatial variations in slip and spatial
variations in the Green’s functions on the fault (this can often
be neglected), a large isochrone velocity itself and/or large
changes in isochrone velocity can produce large ground
motion. An additional contribution comes from the last term
involving the curvature. For two isochrone segments of the
same length, this term will be larger for the isochrone with
the larger curvature.

In the case of a homogeneous rupture (constant slip), the
first integrand can be set to zero. In the case of a homo-
geneous half-space and continuous isochrones, the second
integrand will be small because the Green’s functions do
not change significantly along the isochrones. Thus, ground
acceleration in this simple case is mainly proportional to
changes in the isochrone velocity and to places on the fault
that have long isochrones with large curvature.

Because the largest change in the isochrone contribution
occurs when the rupture hits the top of the fault (in this
model) where the isochrone becomes discontinuous, the crit-
ical point produces the greatest radiation. Note that the iso-
chrone that first becomes tangent to the top of the fault is
also the longest (in this homogeneous case) and it has a larger
curvature than isochrones at a later time also yielding a
strong contribution from the last term in equation (1). Be-
cause the critical point is the first of all points at the top of
the fault that is reached by the isochrones, it has the minimal
isochrone time for all these points. This time can be deter-
mined using equation (2):

Tiso �
������������������������������������������������
�Xs � Xtop�2 � y2 � h2

q
=β �

���������������������
X2
top �H2

q
=vrup;

(2)

where Xtop is the along strike coordinate of the points at the
top edge of the fault; y, h, H, and Xs are defined in Figure 2;
and vrup and β are the rupture velocity and shear-wave ve-
locity, respectively.

Because the critical point has the minimum isochrone
time, it is possible to compute the position Xc of the critical
point for a given station by setting the partial derivative of
equation (2) with respect to Xtop to zero. Thus, for every
point on the free surface we can compute the point on the
top of fault that produces the strongest radiation. Another
critical point is at the end of the rupture, that is, the stopping
phase. By equating the isochrone time for the end of the fault
and solving for the minimal isochrone time, one can compute
that critical point as well.

Computed PGV and Explanation
Using the Critical Point

In Figure 5 we plot the computed PGV for fault parallel
(FP) and fault normal (FN) and the position Xc of the critical
point as a function of the along strike distance Xs for differ-
ent values of y. The along strike profile of PGV shows an
increase until a maximum value and then a decrease, espe-
cially on the FN component. This decline of PGA with dis-
tance along strike for a long strike-slip rupture was also
observed in other studies (Spudich and Chiou, 2008) but
has not been explained yet. The position of the peak, moving
along strike, depends on y and on the value of H and C (see
the section Influence of H and C). The shape of the peak
amplitude along strike can be understood by considering
the position of the critical point. As Xs increases for a station,
the critical point also moves away from the epicenter. After a
while even though Xs continues to increase, the critical point
stays at approximately the same place. Geometrical spread-
ing (1=R) attenuates the ground motion resulting from the
critical isochrone. Hence, the maximum ground velocity for
stations with large Xs is produced by an isochrone close to
the station. However, the isochrone contribution that is close
to the station has weaker radiation (isochrones are more
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closely spaced, shorter, and with less curvature); thus, the
PGV is smaller than for stations close to the critical point.
This is the basic reason for the shape of along strike profiles
of PGV (and PGA). As y increases, that is, the line of stations
parallel to the fault moves farther from the fault, the peak in
PGV occurs at a larger Xs distance.

The critical point affects the FN component more than
the FP component because the radiation becomes strongest
for stations a certain distance away from the critical point due
to the stronger directivity effect (see also the next section).
The FN component is sensitive to the history of the rupture,
that is, what happens before the isochrones come close to the
station. For this reason the directivity is observed primarily
on the FN component. The FP component is more sensitive to
what happens near the station. Because the isochrone veloc-
ity and changes in the isochrone velocity are largest at the

beginning of the rupture, the FP component has its maximum
in the epicentral region. In the case of a heterogeneous
rupture, asperities and strong local changes in the isochrone
velocity can produce strong radiation in regions distant from
the epicentral region (see the later section on heterogeneous
ruptures).

Predictor of the Shape of the PGV and PGA Curves

For stations at a fixed y, the distribution of PGV along
strike is caused by the critical point. Knowing the position of
the critical point, one can compute the effect of geometrical
attenuation 1=R. But in order to predict where the strongest
ground motion will occur at a given distance from the fault,
one needs to know how strongly the critical point radiates. In
our homogeneous model the radiation is proportional to the
change in the isochrone contribution. Within a given time
increment the more points at the top edge of the fault that
radiate, the larger is the change in the area because no more
rupture area is added in the upward direction. In Figure 6 we
plot the isochrone time for the points at the top edge of the
fault according to equation (2) for two stations. For the sta-
tion with a greater Xs distance, a longer segment of the top
edge of the fault radiates elastic waves that arrive at the sta-
tion within 0.5 sec after the critical phase. The reason is that
the curve describing the isochrone time as a function of po-
sition along the top of the fault has a smaller curvature for the
more distant station. The change in isochrone contribution
is hence inversely proportional to the curvature of this curve
evaluated at the critical point (equation 1). Thus, we con-
struct a predictor for the relative amplitudes in ground mo-
tion due to radiation from the critical point. To account for
the radiation we evaluate the curvature, that is, the inverse of
the second derivative of equation (2), at the critical point and
multiply it by the inverse distance (geometrical spreading) to
the critical point. This yields

predictor�y; h;H; Xs; β; C� � �T 00
iso�Xc�

����������������������������
X2
c � y2 � h2

q
��1:
(3)

This predictor cannot be used to predict absolute ampli-
tudes, but it can predict the shape of the curve around the
maximum of the PGVand PGA. A comparison of the predic-
tor and the PGVand PGA (here for ground motion up to 1 Hz)
along strike profiles plots for different y is given in Figure 7.
In all cases the position of the maximum on the FN compo-
nent is predicted well, especially close to the fault. Because
the predictor predicts only the shape that results from the crit-
ical point, the tail of the curves produced by radiation close
to the recording stations is not predicted. Note, that the gen-
eral behavior of PGA is similar to PGV: there is a similar
shape of the along strike profiles very close to the fault. For
increasing y the PGA and PGV saturate for lines of stations
parallel to the fault strike. For even larger y, the PGA and
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PGV will increase along strike—with no evidence of
saturation.

Implications of the Spatial Dependence of PGV
and PGA for Empirical Studies

Most attenuation relations use either the closest distance
to the fault or the distance to the surface projection of the
fault as the distance measure (Abrahamson and Shedlock,
1997). In our idealized model, both of these distance mea-
sures would group all stations that have the same value of y.
In an earthquake, there might be only one or two stations

close to the fault strike. Given the form of PGV and PGA
plotted along strike of the fault, the small number of stations
can produce a sampling issue. If a station were at the end of
the rupture, the recorded PGV in our model at y � 5 km
would be 40% smaller than if the station were in the area
around the maximum PGV. Moreover, the longer the fault
rupture length, the more likely the station will be in an area
where the ground motion is reduced relative to the maxi-
mum. However, for a smaller rupture length a station close
to the fault rupture is more likely to sample the area where
the maximum PGVand PGA occur. Thus, if there is only one
station close to the fault that ruptures, this station will likely
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record about the same PGV or PGA for two different magni-
tudes simply because the stations sample different parts of
the rupture for the two events.

Consider what we observe in an ideal world where
stations are distributed equally along the fault. Let us further
assume that there is constant stress drop and that all events
rupture the full width of the fault. Then the magnitude of the
earthquake scales only with the rupture length because the
average slip is also constant. This assumption is only valid
for earthquakes with a magnitude greater than some mini-
mum because smaller magnitude events would not rupture
the full width of 15 km. In Figure 8 we plot the along strike
profiles for y � 5 km forMw 7.4 andMw 7.3 ruptures. Both
earthquakes have the same slip, rise time, and rupture veloc-
ity; only the rupture length is different (80 km for theMw 7.3
rupture). For the stations that lie next to both ruptures, that is,
within 0–80 km, the two (solid) curves are almost identical.
The seismograms of both events have different durations, but
the peak values are identical. In a regression relation the solid
parts of the profiles (Fig. 8) would be averaged for both
events because those stations are 5 km from the projection
of the rupture plane. The average value for the Mw 7.3 rup-
ture in this example is close (it is actually slightly larger) to
that of theMw 7.4 rupture. That is, there is magnitude satura-
tion of the peak values for distances close to the fault.

For larger y the maximum of the along strike profile is
shifted away from the epicenter due to the greater distance of
the critical point from the hypocenter. Thus, the portion of
the along strike profile that is decreasing, after the maximum
value is reached, gets shorter with increasing y (see Fig. 7).
For large enough y, the along strike profiles for different
magnitudes will show only monotonic increase, yielding an

increasing average PGV and PGA with magnitude for all
stations with the same distance to the rupture plane.

This is consistent with the finding (Cua, 2004; Abra-
hamson and Silva, 2008; Boore and Atkinson, 2008; Camp-
bell and Bozorgnia, 2008; Chiou and Youngs, 2008) that
magnitude saturation is observed only close to the fault;
whereas, there is still an increase in PGVand PGA away from
the fault.

Influence of H and C

In Figure 9 we plot the PGV and PGA (both for ground
motion low-pass filtered to 1 Hz) along the fault for
y � 5 km for two different hypocenter depths, H � 6 km
and H � 10 km, and for two different values for the ratio
of rupture velocity to shear-wave velocity, C � 0:8 and
C � 0:9. The maximum PGV for the scenario with smaller
H appears at a smaller epicentral distance (for C � 0:8)
because the critical point reaches its limiting position closer
to the epicenter allowing for greater effect of geometrical
spreading 1=R. The second, smaller local maximum for
H � 6 km is produced by the critical point at the bottom
of the fault. This peak is smaller because the rupture front
is propagating away from the station; consequently, the iso-
chrone contribution from the bottom of the fault is smaller
than from the top of the fault. If the distance between the
hypocenter and the bottom of the fault is small, as in the case
ofH � 10 km, this second peak does not appear because the
radiation is too weak. The distance of the hypocenter from
the top of the fault might also play a role in understand-
ing why surface ruptures appear to have lower ground
motion than buried ruptures (Somerville, 2003; Kagawa,
et al., 2004).
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Comparing the scenarios with C � 0:8 and C � 0:9,
one can see a large difference in the amplitudes. The peak
for C � 0:9 is farther along strike because the critical point
reaches its final position farther along strike. The amplitudes
are larger because the radiated waves arrive at the stations in
a shorter time span due to the faster rupture velocity. This
again illustrates the importance of the rupture velocity on
ground motion.

In Figure 9 we have also plotted the predictor (equa-
tion 3) for comparison. It predicts the positions of the main
peaks and the relative amplitudes well. It is, hence, a useful
tool to get an idea of how different parameters affect the
ground motion in the homogeneous model.

Slip Scaling

To study the effect of the observed PGVand PGA profiles
on magnitude scaling for events with magnitude-dependent
slip, we compute ground motion for events with different
magnitudes. The top edge of all models is buried 100 m be-
low the free surface. The length of the rupture is computed
using the regression relations of Wells and Coppersmith
(1994) for rupture area (for strike-slip faults) divided by a
width of 15 km for all events. The constant slip is then com-
puted to match the seismic moment. The rupture velocity is

set to 80% of the shear-wave velocity. Table 1 lists the values
used in the computations. The hypocenter is always at
H � 10 km.

Figure 10 shows the resulting along strike profiles for
PGV and PGA and y � 5 km. For a given magnitude (and
hence rupture length), the fraction of the profile that has a
distance of 5 km to the projection of the rupture plane to the
free surface is plotted as solid curves. These stations are right
next to the rupture. The dashed parts of the curves corre-
spond to stations that also have y � 5 km, but their closest
distance to the rupture plane is farther away because their
along strike distance Xs is larger than the rupture length for
the given magnitude. That is, in terms of regression relations
the solid parts of the curves should be compared. The solid
parts of the curves do not overlay as in the previous section,
but they have the same shape. While the amplitudes of the
curves and the tails of the curves differ for PGV, they are
similar for PGA. The average PGV and PGA for the different
magnitudes are given in Table 1. While there is an increase
for the PGV, the PGA for Mw 7.0, 7.2, and 7.4 are about the
same for y � 5 km (similar to Fig. 1).

The shape of the along strike profiles differs for the
dashed parts of the curve where the stopping phase can be
observed. Note that for PGA the stopping phase produces
even larger amplitudes than the critical point at the top of

FN
-P

G
A

[c
m

/s
  ]2

pr
ed

ic
to

r

H=10, C=0.9
H=6,   C=0.8
H=10, C=0.8

H=10, C=0.9
H=6,   C=0.8
H=10, C=0.8

0 20 40 60 80
0

100

200

300

400

500

600

0 20 40 60 80

0.5

1.0

1.5

2.0

2.5

3.0

X  [km]s X  [km]s

Figure 9. Left: PGA computed for different values of C (ratio of rupture velocity to shear-wave speed) and H (depth of the hypocenter).
With C � 0:8 one can see that changing H results in a different position and amplitude of the maximum of the along strike profile. For the
case with H � 6 km one can see a second small local maximum at about 40 km along strike after the main maximum. This small peak
corresponds to the critical point at the bottom of the fault. By increasing C the overall PGA is increased significantly. In addition, the
maximum PGA occurs at a distance farther from the epicenter. Right: The predicted shape of the PGA profile from the three scenarios using
our predictor (equation 3). The position of the peaks as well as the relative amplitudes are predicted well.

Table 1
Values Used in Computation and Resulting Average PGV and PGA for Stations that

Have a Distance to the Projection of the Fault to the Surface of 5 km

Mw Length (km) Slip (m) Rise Time (sec) PGV (cm=sec) at 5 km PGA (cm=sec2) at 5 km

6.6 22.08 1.48 1.07 30.6 143.4
6.8 33.41 1.96 1.34 45.0 184.3
7.0 50.58 2.57 1.43 57.9 216.1
7.2 76.54 3.39 1.78 63.2 193.5
7.4 115.85 4.46 1.85 70.1 218.8
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the fault. These large amplitudes appear at a distance larger
than 5 km.

Heterogeneous Rupture Models in a
Layered Velocity Model

So far we have performed computations for homoge-
neous rupture models in an elastic half-space. But does the
overall behavior of PGV and PGA along the fault hold for

heterogeneous rupture models in a layered velocity struc-
ture? We use the method of Liu et al. (2006) to construct
rupture models that have correlated kinematic parameters.
There will be positive spatial correlation on the fault between
slip and rupture velocity and between slip and rise time.
Areas with large slip are likely to have a larger rupture ve-
locity and longer rise time than areas with small slip. The slip
is spatially coherent with a von Karman distribution for the
wavenumber (Mai and Beroza, 2002); the amplitudes follow
a truncated Cauchy distribution (Lavallée and Archuleta,
2003). The average rupture velocity of each subfault in the
kinematic model takes values between C � 0:6 and 1 fol-
lowing a uniform distribution. Note that the rupture can lo-
cally go supershear (for example, Burridge, 1973; Andrews,
1976; Archuleta, 1984; Bouchon et al., 2001; Bouchon and
Vallée, 2003; Dunham and Archuleta, 2004) yielding very
different behavior from a subshear rupture. We use a layered
1D velocity structure given in Table 2 to compute the Green’s
functions.

As might be expected, the computed PGV and PGA
curves (Fig. 11) are more complex for the case of rupture in
a layered medium. However, the general shape of the along
strike profiles of PGVand PGA can still be observed. For het-
erogeneous models, especially with variable rupture velocity,
we cannot use the concept of one critical point to explain the
behavior of PGV along the fault. The ground motion in a
completely heterogeneous model will depend not only on the
changes in isochrone contribution but also on the isochrone
contribution itself as well as variations in slip along the iso-
chrones (equation 1) and changes in isochrone curvature.
Hence, every area with large values of slip or rupture veloc-
ity, or with a sudden change in rupture velocity or slip on the
fault, can produce strong radiation (Spudich and Frazer,
1984). This is can be observed in Figure 11 for the longest
rupture. On both components there are local maxima in PGV
and PGA that are not due to the critical point but are due to
local areas of large values or changes of values of slip and
rupture velocity. The predictor with one critical point will not
work anymore. To mimic different critical points one could
take the average of a set of predictors computed by using
random values of C.

The reason for the basic shape of the profile (at con-
stant y) is again primarily geometrical spreading, which has
a strong relative effect for stations that are close to the fault.
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Figure 10. FN and FP PGVand PGA at y � 5 km for five events
of different magnitude (see text). The kinematic source parameters
are constant for all five events with only the slip being different to
produce different magnitudes. The solid part of each curve repre-
sents the stations that are at a distance of 5 km to the projection of
the fault plane to the free surface. The stations corresponding to the
dashed parts of the curves have an Xs that extends beyond the
rupture length for the given magnitude; thus, for these stations
the closest distance to the projection of the fault plane to the surface
is greater than 5 km. The solid parts of the PGA curves are very
similar, even though the magnitudes of the events are different.
The dashed parts of the curves show a second maximum, especially
for PGA, which corresponds to the stopping phase. Note that this
maximum from the stopping phase has the same or even larger am-
plitude than the maximum corresponding to the critical point at the
top edge of the fault.

Table 2
1D Velocity Structure Used in the Computations

with Heterogeneous Source Models

VP (m=sec) VS (m=sec) Density (kg=m3) Thickness (m) QP QS

3600 1800 2400 150 60 30
4100 2200 2500 450 120 60
4700 2700 2600 700 200 100
5400 3100 2700 1000 320 160
5900 3400 2800 1700 500 250
6300 3600 2900 23000 1000 500
7800 4500 3300 — 1000 500
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At the beginning of the rupture, the isochrone velocity is the
largest. Hence, a change in slip in the early part of the rupture
radiates more strongly than the same change would in a later
part of the rupture (first integrand in equation 1). Further-
more, there are larger changes in the isochrone contribution
in the first part of the rupture due to directivity, and the cur-
vature and length of the isochrones is larger in the earlier part
of the rupture. Thus, a patch with large slip will radiate more
strongly at the beginning of the rupture than at the end. That

is, a station close to a large slip patch at the beginning of the
rupture will experience stronger peak ground motion than a
station close to a large slip patch at the end of the rupture.
Even though the rupture is heterogeneous, there will still be a
change in isochrone contribution associated with the iso-
chrone hitting the top of the fault, which will also happen
in the earlier part of the rupture. Because 1=R attenuates the
radiation from the earlier part of the rupture for stations far-
ther along strike, we expect lower ground motion from the
earlier part of the rupture for stations farther along strike
from the epicenter.

Note that in Figure 11 the radiation from the stopping
phase cannot be observed. This observation also holds for
heterogeneous models in an elastic half-space that we per-
formed. For the homogeneous models the isochrone that pro-
duces the stopping phase is close to a straight line and is
coincident with the straight edge of the end of the fault. Thus,
the isochrone abruptly stops producing a strong stopping
phase (see Fig. 6). In terms of our predictor the isochrone
time plotted as a function of the coordinate along the end
of the fault has a very small curvature. For the heterogeneous
model the end of the fault will not be coincident with a single
isochrone, and thus it will produce less radiation. This effect
depends on the degree of heterogeneity of the rupture veloc-
ity. Because our model has a very high heterogeneity in the
rupture velocity, the stopping phase is not observed. For
more smooth heterogeneous models we might expect to see
a phase corresponding to an isochrone becoming tangent to
the end of the fault plane.

To prevent any bias arising from the results of only one
random model for each magnitude, we computed ground
motion for six random kinematic source models for each
magnitude. Out of all models and stations for a given closest
distance to the projection of the fault plane to the surface, we
selected randomly 50 PGA and PGV values for each magni-
tude. In Figure 12 the average PGV and PGA values are
plotted with 	1 standard deviation for y � 5 km and
y � 25 km. For y � 25 km both PGVand PGA show scaling
with magnitude, that is, they both increase with increasing
magnitude. The PGV for y � 5 km does also increase with
magnitude, but the relative increase of PGV for an event with
Mw 7.4 with respect to an event withMw 6.6 is larger for y �
25 km than for y � 5 km. The PGA at y � 5 km shows sat-
uration; it even shows a smaller average for an Mw 7.2 event
than for anMw 7.0 event. We attribute this to the small num-
ber of PGA values for which this curve is created. But the
general observation that PGA saturates with magnitude for
stations close to the fault and increases with magnitude for
stations farther away from the fault is reproduced by our sim-
ulations and explained in the previous paragraphs.

Conclusions

We computed ground motion from kinematic simula-
tions of earthquakes on a long strike-slip fault using homo-
geneous and heterogeneous rupture models. In both cases, at
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Figure 11. FN and FP PGVand PGA for five events with differ-
ent magnitudes. All profiles are for a distance y � 5 km. A hetero-
geneous kinematic source model based on the method of Liu et al.
(2006) was used to compute the ground motion. A layered 1D ve-
locity structure (Table 2) was used. The solid part of each curve
represents the stations that are at a distance of 5 km to the projection
of the fault plane to the free surface. The stations corresponding to
the dashed parts of the curve have an Xs that extends beyond the end
of the rupture for the given magnitude; thus, for these stations the
closest distance to the projection of the fault plane to the surface is
greater than 5 km. The solid parts of the PGA curves are very sim-
ilar, even though the magnitudes of the events are different. In gen-
eral, more than one maximum can be observed due to either large
slip patches or abrupt changes in rupture velocity. But the overall
shape also shows an increase in the beginning of the rupture plane
and a decrease at the end of the rupture plane. Note that the stopping
phase cannot be observed in the dashed parts of the curves as in
Figure 10.
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constant and close distance from the fault, the profile of PGA
and PGV shows an initial increase in amplitude and then a
decrease as one moves along strike from the epicenter. That
is, close to the fault there is no monotonous increase of peak
ground motion along the rupture plane as could be expected
by directivity. For the homogeneous case—constant slip,
rupture velocity, and rise time—the shape of the along strike
profiles can be explained using the concept of the critical
point. At the critical point, future isochrones get discontinu-
ous, and a large change in the isochrone contribution occurs.
This radiates a strong phase that produces the maximum
amplitude for stations in the proximity of the critical point.
Because the critical point stays at about the same position,
geometrical attenuation reduces the radiation for stations far-
ther along strike (but at constant y), leading to smaller PGV
and PGA. Consequently, when plotting PGA and PGV as a
function of distance from the epicenter along strike, they in-
crease to a maximum and then decrease to lower values.

For a fixed distance perpendicular to the fault, we use
the critical point to construct a predictor for the location
of the maximum PGV and PGA along strike. This predictor
is also useful for comparing different scenarios because ge-
ometries that resulted in smaller PGV always resulted in a

smaller predictor. We examined scenarios with different dis-
tancesH between the hypocenter and the top of the fault. For
smaller H we compute a smaller maximum PGV. The pre-
dictor also yields a smaller value. This suggests that the po-
sition of the hypocenter relative to the top boundary of the
fault is an important factor in the prediction of peak values in
ground motion and may explain the observations of Somer-
ville (2003).

For heterogeneous rupture models in a layered medium,
the shape of the PGV profile along strike has similar charac-
teristics to that for the homogeneous model: (1) along strike
profiles at a fixed distance to the fault show an increase of
PGV and PGA to a maximum and decreasing values after-
wards, and (2) the position of the maximum is farther along
strike for larger distances (y) from the fault.

These characteristics directly affect empirical attenua-
tion relations that mostly use a distance measure similar to
the perpendicular distance to the fault (Abrahamson and
Shedlock, 1997). Empirical relations show saturation of PGA
and also PGV with increasing magnitude close to the fault
(Abrahamson and Silva, 2008; Boore and Atkinson, 2008;
Campbell and Bozorgnia, 2008; Chiou and Youngs, 2008).
Given our results this can be explained in two ways. First, by
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increasing the fault length of long ruptures, the maximum
PGV and PGA are not increased significantly, but the like-
lihood of a station to be in the tail of the rupture that has
low amplitudes increases. Consequently, peak ground mo-
tion smaller than the maximum peak ground motion along
strike is more likely to be sampled. The maximum ground
motion for a given distance from the fault does not decrease;
it is just less likely to be sampled by increasing the length of
the rupture. Second, even if there were full station coverage,
the average PGV and PGA at a fixed y would likely saturate
because more values smaller than the maximum are included
in the averaging process for large magnitude events.

All of our computations were made for strike-slip faults
in a homogeneous medium and a 1D layered medium. We ex-
pect similar conclusions in a medium that is weakly hetero-
geneous in 3D though we have not shown this. We have
shown that magnitude saturation of PGA and PGV can be ex-
pected for sites located close to long strike-slip faults.

Data and Resources

No data were used in this article. Figure 1 was modified
from Boore and Atkinson (2008). The kinematic models
were computed using the code by Liu et al. (2006). The re-
sulting seismograms were analyzed using Mathematica, ver-
sion 6.0, by Wolfram Research, Inc.
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