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Theoretical and observational studies show that earthquakes on strike–slip faults can have rupture speeds
exceeding the shear wave speed. Due to the close relationship between the rupture velocity and the radiated
wave field, it is important to understand the conditions leading to supershear ruptures and their effect on the
resulting ground motion. We compute dynamic strike slip ruptures in a 3D elastic half space using
heterogeneous frictional properties on faults that are 60 km long. We use a grid spacing of 60 m allowing us
to compute ground motion for frequencies from 0 to 5 Hz. We analyze the resulting ground motion using
isochrones to explain phenomena we observe. We model the amplitudes of the initial shear stress as a self-
similar random field with Cauchy distributed amplitudes. The wavenumber amplitude spectrum of initial
stress decays as a power law with exponent ν that controls the decay and the spatial correlation of the initial
stress. The faster the decay (corresponding to larger value of ν), the more correlated is the stress on the fault,
i.e., the stress field appears spatially smoother. The strength on the fault is computed under the assumption
of a constant S-factor, where S is the ratio of strength excess over stress drop. On a fault with uniform
strength and stress drop the S-factor has to be less than a critical value for the supershear transition to occur.
For models with heterogeneous initial stress we find that both the S-factor and the value of the spectral
decay constant ν affect the occurrence of supershear rupture. We observe that for a given, but small enough,
S-factor a smooth model (ν≥2) can run at supershear speed while a rough model (ν∼1) will rupture at
subshear speeds for the same S-factor. Based on the theory of fracture, a non-dimensional number κ was
introduced to quantify the condition when a transition to supershear rupture velocity can occur during an
earthquake. Transition will occur when κ exceeds a critical value. We introduce a modified dimensionless
parameter κac that is based on the original parameter κ. The parameter κac incorporates a length scale Wac

that reflects the degree of the autocorrelation of the stress field. We compute κac for a large number of
available dynamic ruptures that propagate at subshear and supershear speeds and find: i) there is a critical
value κac(c) below which all ruptures propagate subshear; ii) for values larger than κac(c) there is only a finite
probability that the rupture goes supershear, i.e. it is a necessary but not a sufficient condition for the
occurrence of supershear rupture propagation.
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1. Introduction

Based on a source model computed for the 1979 Imperial Valley
earthquake Archuleta (1984) first proposed supershear rupture
propagation as a potential mechanism to explain observed strong
motion data. Spudich and Cranswick (1984) also inferred a supershear
rupture for a segment of the Imperial Fault based on the phase velocity
of pulses recorded on a linear array of accelerometers in the Imperial
Valley. Supershear propagationhadbeendeveloped in analytical studies
by Burridge (1973) and Freund (1979). It was observed in numerical
studies by Andrews (1976) and Day (1982). Wu et al. (1972) and
Johnson et al. (1973) reported on laboratory experiments from which
they inferred supershear propagation. Rosakis et al. (1999) were the
first to observe the Mach cone of a supershear rupture in laboratory
experiments that definitively showed the existence of supershear
propagation for frictional shear sliding. More recently, supershear
rupture propagation has been inferred for additional earthquakes, for
example, the 1999 Izmit earthquake (Bouchon et al., 2001), the 2001
Kunlun earthquake (Bouchon and Vallée, 2003; Robinson et al., 2006)
and the 2002 Denali Fault earthquake (Dunham and Archuleta, 2004;
Ellsworth et al., 2004).A reviewof supershear velocity in seismology can
be found in a paper by Bouchon in this volume. Besides source models
obtained through kinematic inversions, researchers also linked other
observations to the occurrence of supershear rupture. Among them are
missing aftershocks in segments that potentially ruptured at supershear
speed (Bouchon and Karabulut, 2008), and cracks occurring off the fault
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(Bhat et al., 2007). These cracks are attributed to the Mach cone that is
produced when the rupture propagates faster than the shear wave
speed. Supershear ruptures have the capability to transport large
ground motion at distances much further off the fault than subshear
ruptures (Andrews, this volume; Dunham and Archuleta, 2005;
Dunham and Bhat, 2008).

In view of getting a better assessment of seismic hazard, it is
crucial to better understand physical conditions that will facilitate
supershear rupture. For instance, Bouchon (2008) suggests that
supershear propagation favors fault segments with a simple geom-
etry, i.e., straight segments of faults. On such fault segments in a
uniform stress field, we might expect that the shear stress is highly
correlated. In the stochastic model used to generate the initial stress
that will be discussed below, a highly correlated shear stress implies a
rather large value for the parameter ν controlling the amount of
spatial correlation (the power spectrum of the initial stress is
proportional to k−ν with k being the radial wavenumber). This is
based on the formulation that the stress drop is attenuated as a power
law in the Fourier domain (Andrews, 1980). Empirical evidence
supports this hypothesis (e.g., Lavallée et al., 2006).

In the first part of this paper, we study and quantify how the spatial
correlation of the initial stress constrains the transition to supershear
propagation in dynamic rupture simulations. Later, we investigate the
ground motion resulting from different stress fields. For this purpose
we compare groundmotion for subshear and supershear ruptures and
use isochrones (Bernard and Madariaga, 1984; Spudich and Frazer,
1984) to explain phenomena we observe.

Aagaard and Heaton (2004) used heterogeneous kinematic
rupture models to study the influence of subshear and supershear
rupture propagation on ground motion. Bizzari et al. (2010) study
ground motion using heterogeneous dynamic rupture models that
propagate at supershear speed. One important difference between
their rupture models and the rupture models computed in this study
is that their faults intersect the free surface while our faults are buried.
Bizzari et al. (2010) focus on the ground motion, in particular the
high frequency content, resulting from heterogeneous dynamic
rupture models. They find an enriched high frequency content for
supershear rupture models compared to subshear rupture models,
consistent with the conclusions by Bizzari and Spudich (2008). While
we also will compare ground motion resulting from subshear and
supershear ruptures, we are also interested in the influence of the
autocorrelation of stress on the transition from subshear to super-
shear rupture speed.

2. Characterizing the transition to supershear velocity

To date dynamic rupture studies investigating the transition to
supershearpropagation speedhave used homogeneous (Madariaga and
Olsen, 2000; Dunham, 2007) or simple heterogeneous (e.g., rectangular
barriers, Day, 1982) initial stress models (Dunham et al., 2003; Liu and
Lapusta, 2008). We extend such studies to self-similar random models
that incorporate spatial fluctuations of stress over a continuum range of
length scales as postulated in Andrews (1980). In these models, the
power spectrum is asymptotically attenuated according to a power law
with exponent ν (Lavallée and Archuleta, 2003; Lavallée, 2008). The
power spectrum of the initial stress is illustrated in Fig. 1.

Besides the initial shear stress, the seismic S-factor (Eq. (1))
(Andrews, 1976; Das and Aki, 1977) is identified as an important
parameter that affects the occurrence of supershear propagation for
homogeneous models (Dunham, 2007).

S =
τp−τ0
τ0−τd

ð1Þ

The parameter τp corresponds to the strength (peak stress), τ0 to
the initial stress, and τd to the dynamic sliding stress (Fig. 1). Dunham
(2007) showed that for SN1.19 there is no supershear if the initial
stress is homogeneous on the fault in a half space. However, even for
simple heterogeneous initial stress models (barriers) Liu and Lapusta
(2008) demonstrated that transition to supershear is possible for
larger values of S if the rupture encounters a favorable heterogeneity.

Based on fracture mechanics, Madariaga and Olsen (2000) used a
dimensionless parameter κ (Eqs. (2a) and (2b)) to distinguish
between the different regimes characterizing the propagation of
rupture during an earthquake: no propagation, subshear or super-
shear propagation:

κ =
ðτ0−τdÞ2W
μðτp−τdÞdc

ð2aÞ

with μ as the shear modulus,W as the half width of the fault and dc as
the critical slip weakening distance (Fig. 1). Note, that κ can be written
as a function of the S-factor (Andrews, 1976; Day, 1982):

κ =
τ0−τd

μ
1

1 + S
W
dc

ð2bÞ

Madariaga and Olsen (2000) show there is supershear propagation
if κ exceeds a critical value κ(c). Dunham (2007) shows that this
critical value depends on S. It should be noted that these formulations
were developed for simple homogeneous initial conditions.

Of all parameters involved in the definition of κ, there is still a
question about the choice of the proper “characteristic fault length” to
representW for a heterogeneousmodel. Thiswill be discussed in detail
in a section dedicated to an alternative definition of κ. The definition of
this new parameter κac also depends on the autocorrelation of the
initial stress. To validate the new formulation of κac and determine
empirically the critical κac value κac(c) that separates subshear and
supershear ruptures, we use about 300 dynamic subshear and
supershear ruptures (Schmedes et al., 2010), plus six ruptures
computed for a 300 km strike–slip fault embedded in a 3D velocity
model of Southern California (Dalguer et al., 2008; Olsen et al., 2009).
It should be noted that our database includes models computed for
different classes of initial stress (thus differing from the stochastic
stress model described above), different models of strength (for
example variable S) and different heterogeneous slip weakening
distances. Hence it is an appropriate data set in order to test our
proposed definition of κac.

3. Model setup

We use a parallel MPI (message passing interface) version of the
finite element code of Ma and Liu (2006) to compute our dynamic
ruptures. A slip weakening friction law (Ida, 1972) is used (Fig. 1), but
alternative friction laws are also considered. We perform our
computation for a simple half space (P-wave speed Vp=5.2 km/s, S-
wave speed Vs=3.0 km/s and density ρ=3.0 kg/m3) in which a
vertical rectangular 60 km long and 15 km wide fault is buried 600 m
below the free surface. We do not consider surface ruptures here
because we are mainly interested in the influence of the initial stress
field. Rupturing the free surface will complicate the situation as it can
lead to supershear rupture propagation (Kaneko et al., 2008; Kaneko
and Lapusta, this volume). We use a grid spacing of 60 m, which
enables us to analyze the ground motion up to 5.0 Hz.

Initial shear stress is spatially heterogeneous on the fault. We
compute an initial stress using an approach in which the 2D power
spectrum of initial shear stress is attenuated according to a power law
with exponent v (Lavallée and Archuleta, 2003; Lavallée, 2008). The
power spectrum of the initial stress is proportional to k−v, where k is
the 2D radial wavelength number. We use exponents v=1, 2, 3 and 4
(examples are illustrated in Fig. 2). The larger the exponent v is, the



Fig. 1. Upper row: example of initial shear stress field with power spectral decay of 2 projected on the fault plane (left). The circle with constant initial shear stress is the nucleation
region. The sliding friction is 50 MPa; average normalized power spectral density (right). The blue points are computed by averaging the power spectrum of the initial shear stress
field along circles with constant κ. The line is fitted through the points. Lower row: Linear slip weakening friction law (left); Along strike profiles of sliding stress, initial shear stress
and strength computed using constant S-factor (right). The profiles are through the middle of the fault, more precisely, through the point at which the perturbation in initial stress is
applied that triggers the spontaneous rupture (blue peak in constant region at about 5 km along strike).
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more the stress is correlated. Furthermore, for larger v the stress
appears smoother because there is less energy at high wavenumbers.

In our stochastic model, the stress amplitude is distributed
according to a Cauchy law (Lavallée and Archuleta, 2003; Lavallée et
al., 2006; Liu et al., 2006; Schmedes et al., 2010). For all exponents v
that describe the correlation, we ensure that the stress fields have
identical amplitude distributions of initial stress. This guaranties that
the initial stress models differ only in the amount of spatial
autocorrelation characterized by the parameter ν. It is important to
note that ν represents the power spectral decay not the Fourier
spectral decay (which is ν/2) often used in seismological literature.
For instance, the heterogeneous rupture discussed in Bizzari et al.
(2010) has a Fourier spectral decay of−1 for initial stress, i.e., ν=2 in
our notation. The Fourier spectral decay in slip using our notation
would be ν/2+1.

The static coefficient of friction (shear strength if multiplied by the
normal stress) is spatially heterogeneous on the fault. This is achieved
by using a constant S-factor (Andrews, 1976; Das and Aki, 1977). We
use S=0.6, 0.8, 1.0, 1.2, and 1.4. We chose to use a constant S-factor
because a) a comparison to homogeneous ruptures can be made; b) it
enables us to analyze the transition to supershear velocity as a
function of two independent parameters, ν and S. Thus one can isolate
the dependence on ν when S is constant and vice versa. In the last
section we also consider ruptures with variable S.

To ensure the ruptures are causal and no triggering occurs ahead of
the rupture front, we prescribe a minimal value for the strength drop
τp−τd. Because no region of the fault is expected to have zero
strength before an earthquake, we use a finite positive value. This
does yield a larger S-factor at the locations with small initial stress
than the S-factor we initially used.

We nucleate the ruptures by setting the initial shear stress in a
circular area (radius 2.7 km) equal to the strength. The center point is
elevated above the level of strength (Fig. 1). This yields a slow
nucleation that mimics a triggered rupture (Campillo et al., 2001). As
pointed out by Liu and Lapusta (2008), this feature is important to
prevent nucleation of a daughter crack in front of the main crack that
results from a too forceful initial nucleation.

The rupture velocity is computed as the norm of the inverse
numerical gradient of the rupture times. As a measure of supershear
propagation, we compute the fraction of the total area of the fault
where the rupture velocity exceeds the Eshelby speed

ffiffiffi

2
p

Vs. We use
the Eshelby speed because if we use only an area where we compute a
velocity that exceeds the shear wave speed, the result may not be
reliable due to numerical artifacts in computing the rupture velocity.
These numerical artifacts generally lead to points on the fault that
would be assigned supershear propagation speed even though the
rupture is subshear. This happens because not only are the rupture
times sampled discrete in space, but the rupture front also advances
only in discrete time steps during the computation of the dynamic
rupture. But the probability of a point getting assigned a propagation
speed above the Eshelby speed due to numerical artifacts is low.

As discussed in Section 4.1, stable supershear propagation
manifests itself in a second maximum around the Eshelby speed in
the probability density of rupture velocity. Subshear ruptures have
uni-modal rupture velocity distribution with the mode at sub-
Rayleigh speed. Supershear ruptures have a bi-modal distribution
with one sub-Rayleigh and one supershear mode. In the extreme case
of a pure supershear rupture the distributionwould be uni-modal, but
the mode would be above the Eshelby speed.

4. Rupture propagation

4.1. Fixed S-factor, variable v

First we compare the rupture dynamics for the four initial stress
models based on exponents ν=1,2,3,and 4 (Fig. 2) and all with an S-
factor of 1.4. All four models were computed from the same white
noise field. Note, that in the way themodels are constructed, i.e., same
marginal distributions of stress and strength, same dc, and same
geometry, all models have the same value of κ. Fig. 3 shows final slip,

image of Fig.�1


Fig. 2. Initial stress fields used for power spectral decay of ν=1, 2, 3, and 4 (top to bottom). All four models were derived from the same white noise field. The model with the largest
decay ν=4 has the smoothest appearance. For this reason in this paper, we use the qualification “smooth” or “smoother” as a substitute for “highly correlated”.
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peak slip rate and rupture velocity for one of the ruptures. The rupture
velocity and the peak slip rate are both less correlated (smaller ν)
than the slip. In Fig. S1 in the electronic supplement we also plot the
final slip distribution for the ruptures with different ν.

To compare the rupture dynamics of the four models we compute
the probability density (PDF) of the source parameters within a
rectangular area on the fault (Fig. 3). In Fig. 4a we compare the
probability density of final slip, peak slip rate and rupture velocity
over shear wave velocity for those four models.

A dependency of the source parameters on the autocorrelation of
initial stress is evident. For strongly correlated stress (larger v) the slip
amplitudes and the peak slip rates are larger, and the rupture
propagates faster. All this has a pronounced effect on the resulting
ground motion, as discussed later.

One important feature in Fig. 4a is that the rupture with the
highest correlation (ν=4) has a second mode in the PDF of Vr/Vs

(normalized rupture velocity) at supershear propagation speed.
Because all of the models have identical κ, transition to supershear
cannot be accounted for by relying only on the current definitions of
κ (see Eqs. (2a) and (2b), Madariaga and Olsen, 2000; Dunham,
2007). The definition of κ should be modified to include the
dependence on the parameter v (or any other parameter measuring
the effect of the spatial autocorrelation of the initial stress). The
dependence can be explicit, that is, κ=κ(S, v); or the dependence can
be implicit, that is, through a parameter already included in the
definition of κ (see Eqs. (2a) and (2b)). We will discuss the second
alternative later. Of all the parameters included in the definition of κ,
the parameter W, accounting for some characteristic fault length,
such as the half width of the fault adopted in Madariaga and Olsen
(2000), is the natural parameter that will be considered to include
the dependence on the spatial autocorrelation (or ν) into κ.
Furthermore, supershear occurs for a value of S=1.4 that is
significantly larger than the limiting value of S=1.19 found by
Dunham (2007) for homogeneous initial stress.

Besides the second mode occurring in the PDF of the normalized
rupture velocity, there also appears a second mode in the PDF of peak
slip rate for the supershear rupture (ν=4). This secondmode appears
at lower peak slip rates. We discuss this finding in the next section.

The interdependency among different source parameters dis-
cussed in this section also illustrates the challenge of constructing a
kinematic model that captures the main characteristics of dynamic
rupture models (Guatteri et al., 2004; Liu et al., 2006). Fig. 4a shows
that there is a dependency of the marginal distributions on the
autocorrelation of stress and thus slip (Andrews, 1980). A model that
has a smoother slip distribution will have on average a faster rupture
velocity and larger peak slip rates. In addition, there is a spatial

image of Fig.�2


Fig. 3. Resulting final slip, peak slip rate, and rupture velocity over shear wave velocity for the model with ν=2 (subshear rupture) shown in Fig. 2. An S-factor of 1.4 was used to
compute the strength distribution.
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correlation between the parameters (Schmedes et al., 2010) that
needs to be accounted for.

4.2. Fixed v, variable S-factor

In Fig. 4b we compare the PDF's of the rupture parameters for
models with v=3 but different S-factors S=0.8, 1.0, 1.2, and 1.4. The
PDF's for peak slip rate and the normalized rupture velocity again
show two modes for the rupture models with small S. Similar to the
case of homogeneous models, these models with smaller S (hence
larger κ) are more likely to experience supershear propagation. The
PDF of total slip shows a dependency on subshear or supershear
rupture propagation as well. There is a slightly larger average total slip
for the two ruptures propagating at supershear speed.

The additional mode in the PDF of peak slip rate that appears at
low peak slip rates is associated with the part that of the fault that
propagates at supershear speed. Lower peak slip rates for supershear
rupture are discussed in detail by Bizzari and Spudich (2008); the
lower peak slip rate can be expected because of a decreased
singularity at the crack tip. To confirm that the modes at smaller
peak slip rates correspond to supershear propagation, we separate the
areas of the fault that rupture with subshear and supershear speed for
one of the rupture models. We plot the PDF of peak slip rate for both
cases (Fig. 5); the mode of small peak slip rates corresponds to
supershear propagation. Note that in the area of the fault with
supershear propagation, the peak slip rate has a minimal value 2 m/s
whereas the subshear propagation has no minimum.

4.3. Variable S and variable v

Fig. 6 summarizes the results for 20 ruptures where the
propagation regime (subshear or supershear) is given as a function
of S and ν. The rupture velocity in the model that has the highest
correlated stress (ν=4) goes supershear for all S; the rupture velocity
in the model with the lowest correlation (ν=1) stays subshear for all
S considered here. For themodels with ν=2 or ν=3 the rupture goes
supershear only for small S, as expected based on previous studies
using homogeneous initial conditions (Dunham, 2007).

According to Bouchon (2008), fault geometry is one of the factors
that potentially affects the transition to supershear propagation. We
show that the rupture goes supershear for highly correlated stress
(large value of ν); this is consistent with his observation. For a straight
planar segment of a fault in a constant regional stress field we could
expect that the initial stress would be almost uniform. In such a case
the stress is highly correlated (compared to a fault segment with
complicated geometry).

It is important to note that while supershear propagation becomes
more likely as v increases (for a given S), this will not be true for v→∞.
A rupture with homogeneous initial stress does not propagate at
supershear speed for SN1.19 (Dunham, 2007). Thus the presence of
heterogeneity in the initial stress is necessary to achieve stable
supershear propagation for SN1.19 (also discussed by Liu and Lapusta,
2008). The role of heterogeneity in initial stress will be explained
further in the section discussing the mechanism of supershear
transition.

4.4. Other friction laws

Using the same stress models we computed ruptures with a time
weakening law (Andrews, 2004) that ensures good resolution of the
breakdown zone. One important difference between these numerical
computations from those discussed earlier is the spatial dependence
of the slip weakening distance.With a timeweakening friction law the
slip weakening distance is also heterogeneous on the fault surface. For
this friction law, we also observe that supershear propagation speed is
more likely for highly correlated stress (larger ν) and smaller S. This
result is consistent with the previous observation. We find that the
transition to supershear rupture speed for time weakening friction

image of Fig.�3


Fig. 4. a): Probability density of final slip, peak slip rate and rupture velocity over shear wave velocity for four ruptures with different power spectral decay v and S=1.4. Our
simulations suggest that scenarios of earthquakes with initial stress characterized by a larger value of v produce larger total slip, larger peak slip rates, and faster rupture velocities.
Note that the model with the largest decay has part of the fault rupture at supershear speed. There is also a second mode of lower peak slip rates for that model corresponding to the
area that propagates at supershear speeds. b) Probability density of final slip, peak slip rate and rupture velocity over shear wave velocity for four ruptures with ν=3 and different S-
factor. Two models show supershear propagation and a second mode at low peak slip rates. The distinction between subshear and supershear is also visible in the PDF of final slip.
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occurs for larger S and smaller values of v than for a slip weakening
friction law (see Fig. S2 in electronic supplement). Compared to the
simulations computed with the slip weakening friction law, the
Fig. 5. Probability density of peak slip rate for the areas of the fault that propagate at
subshear speed (black) and supershear speed (gray, dashed). On average supershear
propagation yields smaller peak slip rates than subshear propagation. But note that
there is a lower threshold of about 2 m/s for supershear propagation.
numerical results computed with a time weakening law suggest that
transition to supershear velocity occurs over a larger spectrum of S
and ν values.
Fig. 6. Summary of the subshear or supershear propagation for the 20 ruptures as a
function of S and v. For the highly correlated models (i.e., v equals 3 or 4) transition to
supershear velocity is observed for a wide range of S values considered in our
simulations. For the lowly correlated models (i.e., v equals 1 or 2) transition to
supershear propagation is observed only for the smallest value of S or not at all.

image of Fig.�4
image of Fig.�5
image of Fig.�6
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The increased likelihood of supershear transition for a broader
range of S and ν values for a time weakening friction lawmay have its
origin in the additional spatial heterogeneity in the slip weakening
distance. We computed the wavenumber spectrum of the slip
weakening distance. For all models the power spectral decay vdc of
the slip weakening distance is greater than the spectral decay ν of the
initial stress vdcNv, i.e., the spatial distribution of slip weakening
distance is more correlated than the spatial distribution of initial
stress. This might be the reason that transition to supershear speed
occurs for smaller v of initial stress (for a given S) than for the slip
weakening law. For the ruptures computed using the slip weakening
friction, we used constant slip weakening distance (νdc→∞). But as
shown for the initial stress, complete homogeneity decreases the
likelihood of supershear transition compared to a rupture with a large
but finite ν.

In addition to the slip weakening and time weakening friction
laws, three dynamic ruptures are computed using a friction law based
on shear transformation zone theory (Daub and Carlson, 2008; Daub
et al., 2008). The initial stress is heterogeneous and the fault is
embedded in a whole space. The frictional parameters are adjusted
(E. Daub, pers. comm.) such that the ruptures have nearly constant S-
factor, about 0.85 (see Fig. S3, electronic supplement). Supershear
propagation occurs for highly correlated models (larger ν) while
subshear ruptures result from the less correlated (smaller ν) models
(Fig. S4 in electronic supplement). These results are qualitatively
similar to the results obtained for the slip weakening friction and the
time weakening friction.

The dependence of the transition to supershear velocity on the
spatial heterogeneity of the initial stress (essentially controlled by the
parameter ν) seems to be nearly independent of the specific
formulation of the friction law.

5. Transition to supershear speed

In Fig. 7 we show snapshots in time of the stress evolution for two
ruptures with different values of the correlation: ν=3 and ν=4. The
stresses are shown for a line that is along strike through the center of
the fault. In both cases, the stress propagating in front of the crack
front reaches the level of strength when entering a region of low
strength excess (strength minus initial stress). In this region ahead of
the crack, as the stress begins to break down a daughter crack is
formed. In the less correlated stress field (ν=3) this daughter crack is
not stable. Once the daughter crack enters a region of high strength, it
Fig. 7. Snapshots of evolution of stress on the fault for a profile along strike through the center
traveling in front of the crack reaches the peak stress when entering a region of low peak stre
model ν=3 (upper panel) a daughter crack is created, but it does not become stable and v
vanishes and only themain crack continues propagating. In the case of
a highly correlated stress field the daughter crack is stable and
propagates at supershear speed, even after entering the area of high
strength. For a short period of time there are two cracks propagating
along the fault, but the main crack eventually vanishes resulting in a
single crack propagating at supershear speed.

This situation is similar to the situations discussed by Liu and
Lapusta (2008). In their model they use constant strength and
simulate a crack that enters a region of high initial stress. Hence the
crack also goes from an area of high strength excess to low strength
excess allowing the formation of a daughter crack. One important
difference is that in their model the transition would occur in a region
where the slip takes large values (regions of high stress drop),
whereas in our model it occurs in a region where the slip takes low
values (region of low stress drop). Thus, unless we knowwhat type of
initial model discussed here–constant strength or constant S–is closer
to nature, final slip cannot be used to ascertain the place on the fault
where a rupture would go supershear. This is also consistent with the
result that for subshear ruptures there is no correlation between final
slip and local rupture velocity (Schmedes et al., 2010).

Furthermore, to achieve supershear propagation for SN1.19
(Dunham, 2007) requires heterogeneity in the initial stress and/or
the frictional parameters. The daughter crack forms when entering a
region of low strength excess after coming from a region of high
strength excess. This requires heterogeneity, which is the reason why
our result that supershear propagation becomesmore likely for highly
correlated stress cannot be extrapolated to ν→∞, i.e., spatial
homogeneous stress; and νdc→∞, i.e., spatial homogeneous slip
weakening distance.

6. Resulting ground motion

In Fig. 4a we showed that highly correlated stress (larger ν) results
in larger total slip, faster rupture velocity and larger peak slip rates.
Based on these results we expect a strong dependency of the resulting
groundmotion on the autocorrelation of initial stress. Fig. 8 shows the
spatial distribution of the peak ground velocity (PGV) for the fault
parallel and fault normal component on the free surface resulting
from rupture scenarios produced by three initial stress states: ν=1, 3
and 4, all with S=1.4. These ground motions correspond to the
ruptures whose initial stress maps are shown in Fig. 2 and whose
PDF's are shown in Fig. 4a. The first important result is that the PGV is
much larger for highly correlated stress (larger ν). This is true
of the fault and two different values of ν. In the case ν=4 (lower panel) the shear stress
ss. A daughter crack is nucleated and propagates while the main crack vanishes. For the
anishes while the main crack remains.
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Fig. 8. Fault parallel (left) and fault normal (right) peak ground velocity for S=1.4 and different v. With increasing v the level of shaking increases. The rupture with the largest
correlation (v=4) transitions to supershear. On the fault normal component the supershear rupture produces a PGV pattern resulting from the Mach cone (e.g., see Bernard and
Baumont, 2005). On the fault normal component there is a diminished PGV behind the fault for the model ν=4, i.e., no stopping phase is visible.
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independently of whether the rupture propagates at subshear or
supershear speed. The larger PGV is especially visible on the fault
normal component. This finding is also consistent with the results
discussed in Oglesby and Day (2002). They analyzed dynamic rupture
models with initial heterogeneous stress and found that smooth initial
stress fields produce faster ruptures and larger directivity pulses.

When comparing ground motion from ruptures that propagate at
subshear and supershear speed (middle and bottom panel, respec-
tively, in Fig. 8) one can see two distinct features: On the fault parallel
component the Mach cone is clearly visible (Bernard and Baumont,
2005; Dunham and Archuleta, 2005; Dunham and Bhat, 2008; Bizzari
et al., 2010). The Mach cone is responsible for large PGV occurring far
from the fault when compared to scenarios characterized by ruptures
propagating at subshear propagation speed. The second feature,
evident on the fault normal component, is the lack of a prominent
stopping phase for the supershear rupture for points located beyond
the end of the fault—an observation also made by Andrews (this
volume).

We can understand these observations using isochrones (Bernard
and Madariaga, 1984; Spudich and Frazer, 1984). Because isochrones
are the locus of points on the fault that radiate waves, which arrive at
a station at the same time, one can think of isochrones as contours of
arrival times. The isochrone or arrival time for a given point on the
fault and a fixed observer is the time at which the rupture front
reaches the point on the fault plus the time the elastic wave needs to
travel from that point to the observer. Thus each observer has a
different isochrone distribution because the travel times are different
for different locations on the free surface. The isochrone velocity can
be computed from the isochrone (arrival time) distribution in the
sameway as the rupture velocity is computed using the rupture times.
If the isochrone contours are widely spaced, the isochrone velocity is
large and elastic waves from a larger area arrive in a shorter time
increment, which can produce large amplitude ground motion. If the
isochrones are closely spaced, elastic waves arrive from a smaller area
in a given time increment, both the isochrone velocity and the wave
amplitudes are small. Directivity can be explained by large isochrone
velocities (e.g. Spudich and Frazer, 1984; Schmedes and Archuleta,
2008).When an isochrone hits a barrier, like the top or the end of the
fault, the isochrone becomes discontinuous and radiates a strong
pulse (Bernard and Madariaga, 1984; Spudich and Frazer, 1984;
Schmedes and Archuleta, 2008).

Fig. 9 plots the isochrones (arrival times) for the S-waves on the
fault (middle panel) and the fault normal ground velocity (bottom
panel) for a station located along strike but beyond the end of fault
(top panel). For this station we compare two scenarios that have the
same ν=3 but different values for S: S=1.2 (left, subshear) and
S=1.0 (right, supershear).

For the subshear case there is strong directivity toward the station,
i.e. the isochrones arewidely spaced corresponding to a large isochrone
velocity. This manifests itself in a strong peak in the ground velocity
between23 and24 s on the fault normal component, i.e. directivity. The
supershear case shows no such dominant peak. Because the rupture on
part of the fault travels faster than the S-wave for the supershear case,
the first motion occurs a few seconds earlier than in the subshear case.
Note, that in the case of supershear rupture propagation the first
motion that the station experiences is not radiated from the hypocenter

image of Fig.�8


Fig. 9. Top panel shows PGV for the fault normal component and stress fields with ν=3 and S=1.2 (left, subshear) and S=1 (right, supershear). While the overall level of PGV is the
same, the supershear rupture produces much weaker PGV beyond the end of the fault (represented by line). For the site beyond the end of the fault (black dot) the middle panel
shows the arrival time contours of S-waves; the bottom panel shows the fault normal ground velocity. The duration of the record is much shorter for the subshear rupture. The
isochrones for the subshear case show strong directivity resulting in a strong peak. For the supershear case the isochrone close to the station ran away from the station producing
only small shaking, and the isochrones that are around the hypocenter are too far away to produce strong shaking.
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but from the end of the fault. Looking at the isochrone distribution one
can see that arrival times, around 18 s, correspond to radiation from the
end of the fault, while the isochrones from the hypocenter indicate
arrivals at about 20 s. The initial S-wave ground motion for this station
is made up of isochrones arriving from the end of the fault. These
isochrones are moving away from the station with a “moderate”
isochrone velocity (“moderate” when compared to the subshear case
that showed strong directivity); consequently this station appears to be
in the back direction for directivity. This explains the lack of a stopping
phase as observed in the subshear case. Isochrones coming from the
beginning of the fault arrive at this station almost at the same time.
However, due to the larger distance (with larger geometrical
attenuation) between the hypocenter and the station, their contribu-
tion to ground motion at this station is less important. There are some
peaks in the seismograms resulting from isochrones hitting the top of
the fault, but again, due to the distance between these points and the
station they are attenuated. When comparing the two time series–
subshear and superhear ground motions – one can also see that the
duration of shaking is shorter for the subshear rupture due to the large
isochrone velocities, even though the total rupture duration is longer
for subshear propagation. The extreme case for a station beyond the
end of the fault along strike would be a rupture propagating exactly at
the S-wave speed. For such a rupture this station would see the whole
fault break at once (infinite isochrone velocity) yielding the maximum
possible shaking.

Note, that the observation of a missing or weak stopping phase
only holds when the rupture propagates at a supershear speed over a
large area that is located at the end of the fault. A weak stopping phase
can also result from a very heterogeneous rupture propagation. In that
case only small portions of an isochrone hit the end of the fault at a
given time increment producing only very small incoherent stopping
phases (Schmedes and Archuleta, 2008).
Fig. 10 plots the isochrones (arrival times) for the S-waves on the
fault (middle panel) and the fault parallel ground velocity (bottom
panel) for a station located 12 km off the fault (top panel). This station
lies in the Mach cone for the supershear rupture. We compare two
scenarios with the same ν=3 but different values for S: S=1.2 (left,
subshear) or S=1.0 (right, supershear).

For the subshear rupture there are no strong peaks in the ground
velocity. There is large isochrone velocity between 20 and 22 s, but
because of the distance between the station and that part of the fault
as well as the radiation pattern for the fault parallel component there
is no strong shaking. For the supershear rupture there is a strong pulse
arriving between 19 and 20 s. Again, the isochrones reveal that there
is an area of large isochrone velocity at 19–20 s that is close to the
station. This area also corresponds to a larger fault parallel radiation
pattern coefficient when compared to the subshear case. As in the case
for a station that lies beyond the end of the fault, this station
experiences shaking from waves that arrive nearly simultaneously
from a region on the fault close to the station and the beginning of the
fault because the rupture speed is supershear.

Another interesting feature is that if one looks at the region
between the fault and the station shown in Fig. 10 there are areas that
show smaller PGV even though these areas are closer to the fault. In
Fig. 11 we plot in map view the fault parallel PGV. For the station 6 km
off the fault we show both the P-wave and S-wave isochronesmapped
onto the fault. We also show the time history of fault parallel ground
velocity. This station is at the same position along strike as the station
described in Fig. 10 (black dot). While closer to the fault than the
station in Fig. 10, this station experiences a smaller ground velocity.
For the station 12 km off the fault there is a large area of the fault
surrounded by the 20 s isochrone (Fig. 10). This corresponds to a large
isochrone velocity. The station 6 km off the fault has an additional
isochrone in about the same area (Fig. 11), which corresponds to a
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Fig. 10. Top panel shows PGV for the fault parallel component and stress fields with ν=3 and S=1.2 (left, subshear) and S=1.0 (right, supershear. For the site shown (black dot) the
middle panel shows the arrival time contours of S-waves; the bottom panel shows the fault parallel ground velocity. The subshear case shows moderate directivity, but due to the
distance of the station and the fault parallel radiation pattern no strong peak is produced. The supershear rupture produces a large isochrone velocity close to the fault that results in a
strong peak even though the station is 12 km away from the fault.
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smaller isochrone velocity (waves radiated from the same area arrive
in a longer time span).

Note the first large peak around 16 seconds in the fault parallel
ground velocity for the case with supershear propagation. This peak
occurs before the first S-wave arrival; it corresponds to the P-wave. As
observed and discussed by Bouchon et al. (2001), it is separated from
the arrival of S-waves by a much shorter time than for subshear
rupture propagation. Furthermore, it has a large amplitude that is
comparable to the peak amplitude in the S-wave. Unlike S-waves the
first P-wave arrival always comes from the hypocenter. But in the area
where the rupture transitions to supershear, there is a large P-wave
isochrone velocity; this results in the large P-wave peak on the fault
parallel component. Hence, besides the Mach cone visible in the fault
parallel PGV one can also expect to see stronger directivity in ground
motion generated by the P-waves for supershear ruptures.

The position of the station 6 km off the fault is similar to the
position of the El Centro stations close to the fault for the 1979
Imperial Valley earthquake (Archuleta, 1982). Archuleta (1984)
proposes that the rupture is subshear in the first part of the fault
and then propagates at supershear speed for about 15 km. The station
6 km off the fault that experiences strong P-wave directivity for the
supershear rupture (Fig. 11) also experiences shaking resulting from a
rupture that is first subshear and then transitions to supershear.
Archuleta (1982) and Spudich and Cranswick (1984) discuss large
vertical accelerations that arrive before the first S-wave arrival at the
stations at the El Centro array close to the fault. These might be
explained by P-wave directivity discussed above (see Fig. 11). In Fig.
S5 (electronic supplement) we plot the vertical acceleration and
velocity for this station 6 km off the fault for a subshear and a
supershear rupture. For comparison the vertical velocity and
acceleration recorded at station E08 (low passed to 5 Hz) during the
Imperial Valley earthquake are shown as well. The synthetic super-
shear rupture produces a large vertical acceleration that arrives before
the first S-wave arrival. Furthermore, velocity and acceleration both
show two large pulses, as also observed for E08, while the subshear
case only shows one pulse. Hence the supershear rupture process
proposed by Archuleta (1984) is a possible explanation for the
observed large vertical accelerations.

7. A modified dimensionless parameter to describe
supershear transition

We have shown in the previous sections that the rupture
propagation is strongly dependent on the power spectral decay, or
more generally, the autocorrelation of initial stress. In this section we
introduce a dimensionless parameter that keeps the simplicity of the
parameter κ (Eqs. (2a) and (2b)) introduced by Madariaga and Olsen
(2000) while being general enough to account for heterogeneity in
the initial stress.

For heterogeneous stress models, we define a κac where the
subscript ac stands for autocorrelation. To take into account the
heterogeneity, we introduce a new length scale Wac that depends on
the power spectrum of the initial stress. We define

κac =
〈τ0−τd〉

2Wac

〈μ〉〈τp−τd〉〈dc〉
ð3Þ

Here 〈x〉 denotes themean value of the parameter x over the whole
fault plane. The definition of κac mainly differs from the original
description (Eqs. (2a) and (2b)) because of Wac, and the use of the
mean value for the other parameters. The following derivation applies
for any shape of the power spectrum, not only power laws.

First, we compute the average 1D power spectrum as the average
of the 1D power spectra for all profiles along dip, i.e., for all profiles
with constant position along strike. Wewill explain the reason for this
choice after the following derivations.
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Fig. 11. Top panel shows fault parallel PGV in map view for supershear rupture with
S=1 and ν=3, see also Fig. 10. Black dot indicates the position of station which is
about 6 km off the fault. It experiences weaker shaking than a station 12 km off the fault
(Fig. 10). Two middle panels show P-wave and S-wave isochrones. Bottom plot shows
fault parallel ground motion at the station. The first strong peak is from a large P-wave
isochrone velocity around 16 seconds in the area that ruptures supershear; this peak is
the result of P-wave directivity. The S-wave motion is weaker than for the station in
Fig. 10 because there is a lower isochrone velocity for the station shown here.
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Let pi be the average power spectral density corresponding to the
wavenumber ki. Then the weight ψi is defined as

ψi = pi = ∑
j
pj ð4Þ

with the property∑ψi=1. The ψi are independent of the convention
used for the Fourier transform because any factor (like 2π) cancels
out. We define li=2π/ki as the length scale (or wavelength)
associated with the wavenumber ki. We compute the length scale
Wac as the weighted sum of the length scales li. The weights are
derived from the shape of the power spectrum, as discussed above.

Wac = ∑ψili ð5Þ

Note, that in all computations the zero wavenumber is excluded
because it would lead to an infinite length scale.

For the four stress fields shown in Fig. 2 with ν=1,2,3,and 4, the
computed Wac takes the values 1931 m, 6043 m, 12,122 m, 13,373 m,
respectively. The highly correlated model (ν=4) has a larger Wac

because it has lower weights at the high wavenumbers (small length
scales). Hence the parameterWac shows the expected dependence on
the autocorrelation of initial stress because κac increases with the
power spectral decay ν.
Note, that alternative derivations of Wac are possible. For instance,
an alternative formulation consists in performing theweighted sum of
the wavenumbers, e.g. W̄ac=2π/ΣΨiki. This yields a different range of
values but the same relative behavior (larger value for higher
correlated stress field).

We chose profiles that are taken along dip (profiles of constant
position along strike) to computeWac for two reasons. First, the width
of the fault determines the average arrival time of the healing phases,
which can prevent the daughter crack from becoming stable, i.e., no
supershear propagation. Dunham (2007) discusses the influence of
fault width on the occurrence of supershear. However, one might
argue that for a longer fault there is a higher probability for supershear
rupture to occur because it is more likely to find a region of high
strength excess followed by low strength excess. By using profiles
along strike (profiles of constant position along dip) one would
account for this by getting a largerWac for a longer fault. The problem
with such a formulation of Wac is that even for a very rough stress
model for which supershear propagation can never be achieved, one
can get a largeWac if the fault is long enough and hence a large κac. To
avoid a dependence on the length of the fault, we chose profiles along
dip (constant position along strike).

7.1. Application to 300 dynamic rupture simulations

To validate the parameter κac we use more than 300 dynamic
ruptures discussed in Schmedes et al., (2010). These ruptures provide
a relevant test set for the following reasons: (i) There is a large
number of scenarios of ruptures in the set. (ii) The set includes
ruptures that propagate at subshear speed and ruptures that
propagate at supershear speeds. (iii) It includes ruptures computed
under different conditions. For instance, the spectrum of the initial
stress is either described by a power law function (Andrews, 1980;
Lavallée and Archuleta, 2003; Liu-Zeng et al., 2005) or the von Karman
function (Sommerville et al., 1999; Mai and Beroza, 2002; Guatteri et
al., 2003; Liu et al., 2006). Subsets of scenarios also differ by the
approaches used to compute the shear strength and the slip
weakening distance, both of which can be constant or heterogeneous
over the fault plane. For the rupture with heterogeneous shear
strength it also includes ruptures which have a variable S. In addition
to the ruptures computed by Schmedes et al., (2010), the data base
contains six 300 km long ruptures for a fault embedded within a 3D
velocity structure for southern California (Dalguer et al., 2008; Olsen
et al., 2009). For ruptures with heterogeneous friction parameters
(such as strength or slip weakening distance) the autocorrelation of
the frictional parameters is the same as for the initial stress.

We compute κac for all (N300) ruptures that used a linear slip
weakening friction law. As a measure of supershear propagation, we
compute the fraction of the fault area that propagates above the
Eshelby speed

ffiffiffi

2
p

VS. In Fig. 12a we plot the fraction of the fault above
the Eshelby speed versus κac. We colored coded different models of
initial stress. The larger dots correspond to the six 300 km long
ruptures embedded in a 3D velocity model. In general, there is a clear
boundary defined by the critical number κac(c)≈1 below which there is
no rupture that propagates at supershear speed. For values κacNκac(c)

there is a mixed regime of ruptures that propagate either subshear or
supershear.

These results suggest that for κacN1 there exists a finite probability
that the rupture transitions to supershear propagation. This is a
different result from the one obtained for homogeneous ruptures
discussed in Madariaga and Olsen (2000). In Madariaga and Olsen
(2000), the rupture remains at subshear speed for all κ smaller than a
critical value, while for all κ larger than a critical value the rupture
transitions to supershear speed. In their framework, there are two
regimes of propagation completely determined by a single critical
value κ(c). The results summarized in Fig. 12a indicate that for κac
values smaller than the critical value κac(c) the rupture remains at

image of Fig.�11


Fig 12. a): κac versus the fraction of the fault that propagates above the Eshelby speed.
Color coding is assigned according to different autocorrelation of initial stress.
Dynashake corresponds to the six 300 km long ruptures embedded in a 3D velocity
model (Dalguer et al., 2008; Olsen et al., 2009). No supershear propagation is observed
for κacb1 in all cases. All ruptures with a power spectral decay of 1.0 stay subshear.
b) κac versus the maximum PGV found anywhere on the free surface. Color coding is
assigned according to autocorrelation of initial stress. While decays of ν=1, 2 and von
Karman yield PGV's in the range of those recorded for past earthquakes, the rupture
models with power spectral decay ν=3, 4 yield much larger PGV values.

233J. Schmedes et al. / Tectonophysics 493 (2010) 222–235
subshear speed (as predicted in Madariaga and Olsen, 2000 but for a
different definition of κ than given in Eqs. (2a) and (2b)). However,
when the value of κac exceeds κac(c), transition to supershear is
observed only for a subset of scenarios with κacNκac(c). This suggests
that while there is a finite probability for a transition to supershear
velocity when κacNκac(c), it is not a certainty. Thus κacNκac(c) is a necessary
condition for the occurrence of supershear rupture propagation, but
not a sufficient one. Other factors, like the length of the fault, may play
a significant role in the transition to supershear velocity. But the
length of the fault is only important for ruptures that have an
autocorrelation that allows supershear rupture propagation. A long
fault does not increase the likelihood of supershear transition for
faults with an initial stress field that is weakly correlated.

Consider a scenario where the initial conditions are such that
κacNκac(c). In this scenario there is a probability larger than zero for
finding an area on the fault that favors a transition to supershear.
However, by shifting the location of the hypocenter toward or away
from such a favorable area we modify the distance the rupture travels
until it reaches this favorable area. This will result in a different
rupture velocity when reaching the favorable area (Schmedes et al.,
2010) and thus affect the transition to supershear propagation. Hence,
for heterogeneous ruptures a single dimensionless parameter is
probably not sufficient to predict with certainty the transition to
supershear velocity.

A similar conclusion was drawn for the Reynolds number in fluid
mechanics. In fluid mechanics, it was first postulated that increasing
the Reynolds number R of a fluid above a critical value would lead to a
transition from a stable laminar flow to an unstable turbulent flow.
The Reynolds number is a dimensionless number obtained by
combining a characteristic length, a characteristic (or average)
velocity and the dynamic viscosity of the fluid. This theory turned
out to be inadequate since it was observed that if a flow were stable
for Reynolds numbers smaller than a critical value Rinf the flowmay or
may not remain stable for Reynolds numbers exceeding Rinf. Other
factors such as the surface roughness of the solid in contact with fluid
have to be considered (Landau and Lifshitz, 1987). In analogywith our
understanding of the transition to turbulence in fluid mechanics,
understanding and quantification of the transition to supershear
during an earthquake may require more than one single dimension-
less number.

In our case, one thus can only state that for multiple ruptures with
a κacNκac(c) there is a likelihood that subset will transition to supershear
propagation speeds. This also means that Fig. 6 is strictly valid only for
the set of ruptures we computed. The general result that larger ν is
more likely to produce supershear propagation holds true. But for a
given S and ν, a different stress field or a different position of the
hypocenter might result in either subshear or supershear rupture if
κac≥1.

In contrast, for κacb1 our results suggest that rupture propagation
is always subshear. Of course due to the finite number of scenarios
there might be supershear ruptures that were not sampled with our
data set. Thus we can only assume that for κacbκac(c) the probability is 0
or close to 0 for supershear rupture propagation.

Fig. 12a also illustrates the dependence of supershear propagation
on the autocorrelation of initial stress. All ruptures that have ν=1 (a
total of 56) stay subshear. This is also captured by the values of κac
which are smaller than 1.0 for all but one rupture, which has a value
only slightly above 1.0. Ruptures with ν=2 have κac below and above
1.0 and show both subshear and supershear propagation. Ruptures
with ν=3 or 4 always yield κacN1; they produce both subshear and
supershear propagation.

Note that, as indicated earlier, for ruptures that have heteroge-
neous friction parameters it is important to take their autocorrelation
into account. In all ruptures computed using the slip weakening law,
weused the samepower spectral decay for the frictional parameters as
for the initial stress. But when we used a time weakening friction law,
we observed that a transition to supershear propagation speed ismore
likely than for the slip weakening law. The probable reason is that the
resulting slip weakening distance is more correlated than the initial
stress, meaning Wac(dc)NWac(τ0). One way to incorporate length
scales of frictional parameters that are different from the initial stress
would be to use the mean of the length scales involved, e.g., for the
rupture computed using the time weakening friction law one would
use (Wac(dc)+W(τ0))/2 as length scale in the definition of κac. Fig. S6
in the electronic supplement shows the fraction of the fault above the
Eshelby speed versus the parameter κac = ðκacðτ0Þ + κacðdcÞÞ= 2
incorporating the autocorrelation of initial stress as well as slip
weakening distance. Again, there is a no supershear rupture for a value
of about κacb1.
7.2. Influence of κac on ground motion

The basic parameters that define κac will all have some effect on
ground motion. For instance, we expect larger ground motion for
smaller S, or larger ratios of (τo−τd)/μ. As shown in Fig. 8, the ground
motion amplitude is larger for highly correlated initial stress, i.e.,
larger Wac.

In Fig. 12b we plot κac versus the largest peak ground velocity
(PGV) on the free surface for different autocorrelations of stress. We
use 260 dynamic ruptures computed in a half space. There is a clear
positive correlation between the PGV and κac. Of course, the peak
ground motion depends on many other factors, such as site response
or seismic attenuation. However, for two faults embedded within the
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same velocity model κac provides a straightforward way to estimate
which model produces larger peak ground motion.

From Fig. 12b one can also see how different maximal PGV's are
related to different autocorrelations of stress. The stress fields with
ν=1 and 2, and the stress derived from von-Karman slip maps
(Sommerville et al., 1999; Mai and Beroza, 2002; Guatteri et al., 2003;
Liu et al., 2006) yield values that are in the range of what has been
observed to date . In contrast, the rupture models with ν=3 and 4
produce PGV's much larger than have been observed to date (Shin et
al., 2000). This is consistent with the observation (Fig. 4a) that a
smoother initial stress yields larger slip, faster rupture velocities and
larger peak slip rates.

The extreme PGV's shown in Fig. 12b occur right at the fault trace.
Because observations in the near field of large strike slip earthquakes
are sparse, we might not have recorded such extreme PGV's. Another
caveat is that the dynamic models are computed in a half space with
constant normal stress. But given that the models with ν=3 and 4
produce much larger PGV's than the maximums observed, one could
speculate that the autocorrelation of stress in the Earth is in the range
of ν=1 or 2 for most earthquakes.

8. Conclusions

Using a large suite of dynamic rupture models we find that
transition to supershear rupture propagation is more likely to occur
for faults (or fault segments) that have a large autocorrelation in
initial stress, i.e., for faults where the spatial distribution of initial
stress appears smooth (see Fig. 2). This is in good agreement with the
observation by Bouchon (2008) that supershear ruptures tend to
occur on simple geometries for which we expect almost uniform, i.e.,
highly correlated, stress conditions.

We find that the transition to supershear propagation speed occurs
when the rupture enters from a region of high strength excess into a
region of low strength excess thereby enabling the formation of a
daughter crack. Either a region of high pre-stress and constant strength
or a region of low pre-stress and low strength can create this
circumstance. The important difference is that in the former the
transition occurs in areas that will have large total slip while in the
latter these areaswill have small total slip.Hence, total slip is not auseful
parameter to predict where a transition to supershear propagation
might occur in a kinematic framework (see also Schmedes et al., 2010).

The transition to supershear speed is influenced not only by the
spatial distribution of initial stress but also by the spatial distribution
of the slip weakening distance.With a timeweakening friction law the
slip weakening distances have a greater spatial correlation than the
initial stress. In this situation we find a greater likelihood for a
transition to supershear speed for a given S and v.

Besides facilitating the transition to supershear rupture propaga-
tion the autocorrelation of stress greatly influences the rupture
dynamics and ground motion for both subshear and supershear
rupture. A fault that has a smooth initial stress shows larger maximal
slip, larger peak slip rates, and faster rupture velocity (see Fig. 4a and
b). As a consequence, highly correlated models produce larger ground
motion. For ruptures that propagate at supershear speeds we find
certain characteristics that are different from subshear ruptures. Parts
of the fault that rupture at supershear speed have, on average, lower
peak slip rates than parts that propagate at subshear speed confirming
the results in Bizzari and Spudich (2008).

Because of the Mach cone large ground motion appears on the fault
parallel component at distances far from fault as noted by Dunham and
Archuleta (2005) andDunhamandBhat (2008).Wealsoobserve that the
stopping phase is absent or diminished. For a station that lies beyond the
end of the fault thefirstmotion originates from the end of the fault that is
closer to the station; all the subsequent isochrones aremoving away from
the station yielding small groundmotion as if the stationwere in theback
azimuthof the rupture.Diminished stoppingphases canalsobeproduced
by very heterogeneous rupture propagation that would produce very
irregular isochrones (Schmedes and Archuleta, 2008).

While directivity effects for S-waves are not an issue for super-
shear propagation, directivity effects for ground motion generated by
P-waves come to the forefront. This strong P-wave directivity offers a
possible explanation for the large vertical accelerations observed
during the 1979 Imperial Valley earthquake (Archuleta, 1982;
Spudich and Cranswick, 1984). Bizzari et al. (2010) find an elevated
spectral acceleration at high frequencies for a few of the Imperial
Valley stations close to the fault, which is consistent with their finding
that stations experiencing mach pulses should be richer in high
frequencies. Interestingly, among all events they analyzed, the
Imperial Valley earthquake is the only event, for which they could
observe an elevated spectral acceleration at high frequencies.

In general, it is important to consider the possibility of supershear
ruptures for hazard assessment because the spatial distribution of
ground motion is so different from that generated by subshear
ruptures. In particular, large amplitude ground motions can extend
farther from the fault and the polarization of the maximum ground
motion is completely different—fault parallel rather than fault normal.

Based on the original definition of κ by Madariaga and Olsen
(2000) we introduced a modified parameter κac that incorporates a
characteristic length scaleWac, which depends on the autocorrelation
of the initial stress field. For κac smaller than the critical value κac(c) , the
rupture propagates at subshear speed (as predicted in Madariaga and
Olsen, 2000 but for a different definition of the parameter κ given in
Eqs. (2a) and (2b)). However, when κac exceeds κac(c), transition to
supershear is observed only for a subset of scenarios with κacNκac(c).
Thus when κacNκac(c) there is a probability for a transition to supershear
velocity but not a certainty. This is different from the theory advanced
in Madariaga and Olsen (2000) where a transition to supershear
velocity is uniquely constrained by κ exceeding a critical value.

The parameter κac also correlates well with the computed PGV at
the free surface. As such κac could be used to predict which scenarios
of dynamic ruptures are likely to yield larger ground motion without
actually computing a dynamic rupture.

We also find, that ruptures with a high degree of correlation in
initials stress, ν=3 and ν=4, produce PGV values significantly larger
than the largest observed PGV to date. Furthermore, for values ν=3
and ν=4 we always find that κacNκac(c). This would imply that
supershear propagation should occur often in nature if the stress were
highly correlated. If we assume that supershear ruptures don't occur
very often, this would imply that the stress in the Earth is less
correlated implying a smaller v in the range of 1 and 2 for strike slip
faults, corresponding to a Fourier spectral decay of slip that is −1.5
and −2, respectively (see also Lavallée et al., 2006).
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